Arithmetic, Geometric and Ergodic Aspects of the Theory of Lie Groups and their Discrete Subgroups

李群及其离散子群理论的算术、几何和遍历方面

基本信息

  • 批准号:
    0244406
  • 负责人:
  • 金额:
    $ 73.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-07-01 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

AbstractMargulisThe problems to be investigated are in the area of the theory of Lie groups and their discrete subgroups. One of the main objectives is to continue the program of establishing a homogeneous space approach as a powerful tool in number theory. Special attention will be given to the problem of "effectivization" in Oppenheim conjecture and its quantitative generalizations. It is also proposed to continue to study recurrence properties of random walks on Lie groups and their discrete subgroups on homogeneous spaces, manifolds and general metric spaces.The theory of Lie groups and their discrete subgroups is one of the central fields in mathematics. During the last few decades, it was realized that some aspects of the theory can be applied to solve certain problems in number theory and related topics, which could not be tackled by other methods. This proposal is related to rigidity theory that studies phenomena when rather weak data about geometric and mathematical objects determines completely or almost completely the structure of those objects.
摘要margulis将要研究的问题在谎言群体及其离散亚组的理论领域。 主要目标之一是继续建立同质空间方法作为数字理论中强大的工具的程序。 在Oppenheim猜想及其定量概括中,将特别注意“有效化”的问题。 还建议继续研究在谎言组上随机步行的复发特性及其在同质空间,歧管和一般度量空间上的离散亚组。谎言组及其离散亚组的理论是数学中的中心领域之一。 在过去的几十年中,人们意识到该理论的某些方面可以应用于数字理论和相关主题中的某些问题,而其他方法无法解决这些问题。 该建议与刚性理论有关,即当关于几何和数学对象的较弱数据完全或几乎完全决定这些对象的结构时,研究现象。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Margulis其他文献

The linear part of an affine group acting properly discontinuously and leaving a quadratic form invariant
仿射群的线性部分适当地不连续地作用并留下二次形式不变
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Herbert Abels;Gregory Margulis;G. Soifer
  • 通讯作者:
    G. Soifer
Semigroups containing proximal linear maps
包含近端线性映射的半群
  • DOI:
    10.1007/bf02761637
  • 发表时间:
    1995
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Herbert Abels;Gregory Margulis;G. Soifer
  • 通讯作者:
    G. Soifer

Gregory Margulis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory Margulis', 18)}}的其他基金

Arithmetic, Geometric and Ergodic Aspects of the Theory of Lie Groups and their discrete subgroups
李群及其离散子群理论的算术、几何和遍历方面
  • 批准号:
    1265695
  • 财政年份:
    2013
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Continuing Grant
Groups: representations and presentations
团体:陈述和演示
  • 批准号:
    0801190
  • 财政年份:
    2008
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Standard Grant
Arithmetic, Geometric and Ergodic Aspects of the Theory of Lie groups and their discrete subgroups
李群及其离散子群理论的算术、几何和遍历方面
  • 批准号:
    0801195
  • 财政年份:
    2008
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Continuing Grant
FRG: Asymptotic and probabilistic methods in geometric group theory
FRG:几何群论中的渐近和概率方法
  • 批准号:
    0455922
  • 财政年份:
    2005
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Continuing Grant
Arithmetic Groups
算术组
  • 批准号:
    0354731
  • 财政年份:
    2004
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Standard Grant
Arithmetic, Geometric, and Ergodic Aspects of the Theory of Lie Groups and Their Discrete Subgroups
李群及其离散子群理论的算术、几何和遍历方面
  • 批准号:
    9800607
  • 财政年份:
    1998
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Continuing Grant
Rigidity of Actions of Higher Rank Lattices
高阶格子作用的刚性
  • 批准号:
    9703770
  • 财政年份:
    1997
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Arithmetic, Geometric and Ergodic Aspects of the Theory of Lie Groups and their Discrete Subgroups
数学科学:李群及其离散子群理论的算术、几何和遍历方面
  • 批准号:
    9424613
  • 财政年份:
    1995
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Arithmetic, Geometric, and Ergodic Aspects of the Theory of Lie Groups and Their Discrete Subgroups
数学科学:李群及其离散子群理论的算术、几何和遍历方面
  • 批准号:
    9204270
  • 财政年份:
    1992
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Continuing Grant

相似国自然基金

强杂波下雷达弱小目标检测的矩阵信息几何方法
  • 批准号:
    62371458
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于离散几何模型的高质量非结构曲面网格生成方法研究
  • 批准号:
    12301489
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
拓扑棱态的微观几何性质及其在非线性光响应中的特征
  • 批准号:
    12374164
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
流固复合膜的几何非线性弹性
  • 批准号:
    12374210
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
离心叶轮冷热态双重不确定性几何变形的流动机理及鲁棒设计方法
  • 批准号:
    52376030
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Arithmetic, Geometric and Ergodic Aspects of the Theory of Lie Groups and their discrete subgroups
李群及其离散子群理论的算术、几何和遍历方面
  • 批准号:
    1265695
  • 财政年份:
    2013
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Continuing Grant
Arithmetic, Geometric and Ergodic Aspects of the Theory of Lie groups and their discrete subgroups
李群及其离散子群理论的算术、几何和遍历方面
  • 批准号:
    0801195
  • 财政年份:
    2008
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Continuing Grant
Arithmetic, Geometric, and Ergodic Aspects of the Theory of Lie Groups and Their Discrete Subgroups
李群及其离散子群理论的算术、几何和遍历方面
  • 批准号:
    9800607
  • 财政年份:
    1998
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Arithmetic, Geometric and Ergodic Aspects of the Theory of Lie Groups and their Discrete Subgroups
数学科学:李群及其离散子群理论的算术、几何和遍历方面
  • 批准号:
    9424613
  • 财政年份:
    1995
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Arithmetic, Geometric, and Ergodic Aspects of the Theory of Lie Groups and Their Discrete Subgroups
数学科学:李群及其离散子群理论的算术、几何和遍历方面
  • 批准号:
    9204270
  • 财政年份:
    1992
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了