Virus-Inspired Declarative Geometric Computation

受病毒启发的声明式几何计算

基本信息

  • 批准号:
    0218435
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-09-01 至 2006-08-31
  • 项目状态:
    已结题

项目摘要

EIA-0218435Meera SitharamUniversity of Florida Virus-Inspired Declarative Geometric ComputationThe goal of the project is to develop geometric computational models and tools for virus assembly from their constituent proteins, and virus crystal packing. Furthermore, inspiration of the above processes is being used to rethink computationally tractable declarative geometry (DG), defined as the intuitive, constraint-based representation and efficient realization of composites of simple interacting geometric objects, starting from a declarative specification of the composite's properties. In particular, a new game-theoretic constraint model is being developed for the underlying class of algebraic-geometric computations and corresponding algebraic varieties. Existing software in the form of the PI's geometric constraint solver FRONTIER is forming the base for implementing the new computational framework. The new virus computational models is used for the studying the following unanswered questions on carefully chosen, geometrically significant viruses: (a) the isolation of crucial geometric events during assembly (helpful for disrupting assembly); (b) the isolation of assembly events - such as molecular conformational changes - that require the involvement of viral genomic material, (helpful for understanding DNA-protein interactions); and (c) the isolation of key geometric events during virus crystallization (as an idealized version of molecular crystallization).The new DG virus models is being refined and validated by checking consistency with known behavior of viruses and their constituent proteins during assembly and crystallization. A small number of other highly focused experiments; selective X-ray crystallography and/or cryoelectron microscopy is being performed. As a significant player to help with both of the above goals, use the distinctive Maize-streak virus (MSV) will be used, whose structure and properties are particularly suited to goals of the project. A comparison of the new geometric virus models with other geometry-based computational virus models is being made.
EIA-0218435Meera sitharamuniversity佛罗里达病毒启发的声明的几何计算该项目的目标是从其成本蛋白和病毒晶体包装开发用于病毒组装的几何计算模型和工具。此外,上述过程的灵感被用来重新考虑计算上可触犯的声明几何(DG),该几何(DG)定义为基于直观的,基于约束的表示,并有效地实现了简单交互几何对象的复合材料,从复合材料的声明规范开始。特别是,为基础代数几何计算和相应的代数品种开发了一种新的游戏理论约束模型。 PI几何约束求解器边境形式的现有软件正在构成实施新计算框架的基础。新的病毒计算模型用于研究有关精心选择的,几何意义的病毒的以下未解决的问题:(a)在组装过程中隔离至关重要的几何事件(有助于干扰组装); (b)需要隔离病毒基因组材料的组装事件(例如分子构象变化)(有助于理解DNA-蛋白质相互作用); (c)病毒结晶过程中关键几何事件的分离(作为分子结晶的理想化版本)。新的DG病毒模型正在通过与已知的病毒行为及其组成蛋白的一致性进行完善和验证,并在组装和结晶过程中。少数其他高度专注的实验;选择性X射线晶体学和/或冷冻电子显微镜正在进行。作为帮助实现这两个目标的重要参与者,将使用独特的玉米污染病毒(MSV),其结构和属性特别适合该项目的目标。正在对新几何病毒模型与其他基于几何的计算病毒模型进行比较。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Meera Sitharam其他文献

Combinatorial decomposition, generic independence and algebraic complexity of geometric constraints systems: applications in biology and engineering
几何约束系统的组合分解、泛型独立性和代数复杂性:在生物学和工程中的应用
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Meera Sitharam;Yong Zhou
  • 通讯作者:
    Yong Zhou
Generalized Boolean Hierarchies and Boolean Hierarchies Over RP (Conference Abstract)
广义布尔层次结构和 RP 上的布尔层次结构(会议摘要)
Configuration spaces of linkages
连杆配置空间
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Meera Sitharam;Menghan Wang
  • 通讯作者:
    Menghan Wang
Modeling Virus Self-Assembly Pathways Using Computational Algebra and Geometry
使用计算代数和几何对病毒自组装途径进行建模
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Meera Sitharam;M. Agbandje
  • 通讯作者:
    M. Agbandje
Combinatorial Rigidity and Independence of Generalized Pinned Subspace-Incidence Constraint Systems
广义钉扎子空间入射约束系统的组合刚性和独立性
  • DOI:
    10.1007/978-3-319-21362-0_11
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Menghan Wang;Meera Sitharam
  • 通讯作者:
    Meera Sitharam

Meera Sitharam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Meera Sitharam', 18)}}的其他基金

Collaborative Research: Geometric Elucidation of Supramolecular Assembly and Allostery with Experimental Validation
合作研究:超分子组装和变构的几何阐明与实验验证
  • 批准号:
    1563234
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Stability of Structures Large and Small
FRG:合作研究:大大小小的结构的稳定性
  • 批准号:
    1564480
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
MPS: BIO: Theory, Algorithms, Software, for Predicting Geometric Entropy-driven Virus Assembly, using Multiscale Configuration Space Atlasing and Combinatorial Enumeration
MPS:BIO:使用多尺度配置空间图谱和组合枚举来预测几何熵驱动的病毒组装的理论、算法、软件
  • 批准号:
    1122541
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Multiscale Macromolecular Assembly Pathways via Algebraic Combinatorics
通过代数组合的多尺度大分子组装途径
  • 批准号:
    0714912
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
NER: Geometry and Tensegrity Based Computational Modeling of Birus Assembly Pathways
NER:基于几何和张拉整体的 Birus 组装路径计算模型
  • 批准号:
    0404116
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
REU Supplement: POWRE: Analysis of Specialized Constraint Models for Engineering Design
REU 补充:POWRE:工程设计专用约束模型分析
  • 批准号:
    0096104
  • 财政年份:
    2000
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Capturing Multilayered Design Intent using Efficient Constraint Decomposition
使用有效的约束分解捕获多层设计意图
  • 批准号:
    9902025
  • 财政年份:
    1999
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
POWRE: Analysis of Specialized Constraint Models for Engineering Design
POWRE:工程设计专用约束模型分析
  • 批准号:
    9870404
  • 财政年份:
    1998
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Foundations and Mathematical Aspects of Computer Science (An AMS session) to be held at Kent State University, November,l995
计算机科学的基础和数学方面(AMS 会议)将于 1995 年 11 月在肯特州立大学举行
  • 批准号:
    9529950
  • 财政年份:
    1995
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RIA: Proving Circuit Complexity Bounds Using Classical Analytic Methods
RIA:使用经典分析方法证明电路复杂性界限
  • 批准号:
    9409809
  • 财政年份:
    1994
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Origami-inspired design for a tissue engineered heart valve
职业:受折纸启发的组织工程心脏瓣膜设计
  • 批准号:
    2337540
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
  • 批准号:
    2344109
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
BAMBOO - Build scAled Modular Bamboo-inspired Offshore sOlar systems
BAMBOO - 构建规模化模块化竹子式海上太阳能系统
  • 批准号:
    10109981
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    EU-Funded
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
  • 批准号:
    2340453
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
  • 批准号:
    2340799
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了