Plant Vacuole Biogenesis and Function

植物液泡的生物发生和功能

基本信息

  • 批准号:
    0212013
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-08-01 至 2005-06-30
  • 项目状态:
    已结题

项目摘要

Plant cells store a diverse variety of molecules in vacuoles. Storage is the central reason why plants are so important to humankind. The wars against cocaine and heroin result from the harvest of products in storage vacuoles, the morning coffee is brewed to release products stored in vacuoles, the flowers in our garden are there because of pigments stored in vacuoles, and the nutrition of domestic animals and humans ultimately depends upon proteins stored in plant vacuoles. Many molecules that are targets in plant biotechnology are stored in vacuoles. Only by understanding the different compartments, their internal contents and environment, and how proteins and membrane are directed to each, will we be able to program a cell to make and accumulate a desired product. The need to separate a digestive compartment similar to the yeast vacuole or mammalian lysosome from the storage compartments has resulted in a complex plant vacuolar system. Of the storage compartments, protein storage vacuoles have been best studied because proteins are relatively easy to track in a cell.In many plant cells, separate protein storage and lytic vacuoles coexist. Proteins are delivered to each from the Golgi complex by separate vesicular trafficking pathways, clathrin coated vesicles for the lytic pathway, and dense vesicles (or their equivalents)for the protein storage vacuole pathway. However,in developing seeds and certain other cells, the two pathways converge on the same vacuole. In this instance, for example in protein storage vacuoles in seeds, the resultant organelle is a multivesicular body, where the storage products are partitioned in the "soup " and lytic functions are partitioned into the internal vesicles. Thus the seed protein storage vacuole is a compound organelle,where two functionally distinct compartments exist within the limiting membrane. How proteins are delivered by the two separate vesicular pathways to the two compartments within the organelle is an important unsolved question in cell biology. This project focuses on mechanisms by which proteins are sorted into the protein storage vacuole pathway in the Golgi complex. Results from recent ligand binding experiments indicate that the lumenal domain of a plant RMR protein specifically interacts with the targeting determinants that sort proteins into the protein storage vacuole pathway. RMR proteins are integral membrane proteins that traffic from Golgi to the protein storage vacuole where they are incorporated into a membrane-containing crystalloid within the storage compartment.Thus it is likely they serve as a unique type of sorting receptor.RMR proteins are also expressed in avian and mammalian cells. The association and dissociation constants, and stoichiometry, for binding of RMR protein lumenal domains for a model ligand will be determined. The function of RMR proteins in plants will be assessed by generating antisense knockouts in tobacco and by identifying transposon/T DNA insertions in individual RMR protein genes in Arabidopsis. Motifs in the RMR proteins' cytoplasmic tails responsible for traffic from Golgi to the storage compartment will be identified.A separate experimental strategy will address mechanisms by which the storage compartment crystalloid is formed. Dr. Rogers' laboratory has purified protein storage vacuole crystalloids away from other membranes in the vacuole. Using a proteomics approach, the integral membrane proteins specifically incorporated into PSV crystalloids, and then tonoplast and globoids in B. napus seeds will be identified. The mechanisms by which a tomato storage protein related to 11S globulins that appears to have transmembrane helices is incorporated into crystalloid membranes will be defined.Although protein storage compartments were thought initially to be unique to plant cells, evidence now emerging indicates that animal cells also have a dense vesicle pathway, and that multivesicular body endosomes in animal cells may partition two separate functions within the same organelle. Thus,an understanding of fundamental processes of compartmentation in plant cells may have broader impact in cell biology. The ability to visualize the two compartments easily in protein storage vacuoles and to track proteins in each of the vesicular pathways provides great advantages for use of a plant system in these studies.
植物细胞在液泡中存储各种分子。存储是植物对人类如此重要的重要原因。针对可卡因和海洛因的战争是由于储存液泡的收获而造成的,早晨咖啡被酿造出来释放储存在液泡中的产品,我们花园中的花朵在那里,因为含有液泡中的颜料,家畜的营养和人类的营养最终依赖于植物液泡中存储的蛋白质。植物生物技术中的许多分子都存储在液泡中。只有了解不同的隔室,它们的内部内容和环境,以及如何将蛋白质和膜引导到每个区域,我们才能对单元进行编程以制造和积累所需的产品。将类似于酵母液泡或哺乳动物溶酶体类似的消化室与储存室分开的需要,导致了一个复杂的植物液泡系统。在存储室中,最好研究蛋白质储存液泡,因为蛋白质在细胞中相对易于跟踪。在许多植物细胞中,分开的蛋白质储存和裂解液泡共存。蛋白质通过单独的囊泡运输途径,裂解途径的网格蛋白涂层囊泡以及蛋白质储存液泡途径的密集囊泡(或它们的等效物)从高尔基体配合物中传递到每种蛋白质。但是,在开发种子和某些其他细胞中,这两种途径在同一液泡上汇聚。在这种情况下,例如,在种子中的蛋白质存储液泡中,所得的细胞器是一个多囊体,其中存储产物在“汤”中分配,裂解功能被分配到内部囊泡中。因此,种子蛋白储存液泡是一种化合物细胞器,其中有两个在功能上不同的隔室中存在于极限膜中。在细胞器中,两种单独的囊泡途径如何传递到蛋白质是细胞生物学中的一个重要的未解决问题。该项目的重点是将蛋白质分类为高尔基体综合体中蛋白质储存液途径的机制。最近的配体结合实验的结果表明,植物RMR蛋白的腔内结构域特异性与靶向决定因素相互作用,该靶标确定因素将蛋白质分类为蛋白质储存液泡途径。 RMR蛋白是不可或缺的膜蛋白,从高尔基体到蛋白储存液,将它们掺入储存室内的含膜结晶中。将确定用于模型配体的RMR蛋白腔内结构域结合的缔合和解离常数以及化学计量。 RMR蛋白在植物中的功能将通过在烟草中产生反义敲除,并通过鉴定拟南芥中各个RMR蛋白基因中的转盆/T DNA插入来评估。将确定RMR蛋白质的细胞质尾巴中的基序,以识别负责从高尔基体到储存室的交通。罗杰斯博士的实验室已将蛋白质储存液泡晶体纯化,远离液泡中的其他膜。使用蛋白质组学方法,将鉴定出特异性地掺入PSV晶体中的积分膜蛋白,然后将块状体和球形芽孢杆菌中的球形蛋白识别。将定义与11S球蛋白相关的番茄储存蛋白与11S球蛋白相关的机制,这些机制将被纳入结晶膜中。尽管认为蛋白质储存室最初被认为是植物细胞所独有的,但现在有证据表明,现已出现的证据表明,动物细胞也表明具有多浓密的囊泡小细胞,并且在多个动物的身体中可以分离出两种分离的动物体内,并且可以分离两者。因此,了解植物细胞中隔室基本过程的理解可能对细胞生物学产生更大的影响。在蛋白质储存液泡中轻松可视化这两个隔室的能力以及在每种囊泡途径中跟踪蛋白质的能力,为在这些研究中使用植物系统提供了极大的优势。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Rogers其他文献

A New Era of Fiduciary Capitalism? Let’s Hope So
信托资本主义的新时代?让我们如此希望
  • DOI:
    10.2469/faj.v70.n3.1
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Rogers
  • 通讯作者:
    John Rogers
INNOVATIONS IN RESUSCITATION SCIENCE: ASSESSMENT OF DEFIBRILLATION EFFICACY OF A NEXT-GENERATION MINIATURIZED AUTOMATED EXTERNAL DEFIBRILLATOR
  • DOI:
    10.1016/s0735-1097(20)34100-0
  • 发表时间:
    2020-03-24
  • 期刊:
  • 影响因子:
  • 作者:
    Christine Shen;John Rogers;Sanjeev Bhavnani
  • 通讯作者:
    Sanjeev Bhavnani
Use of Laryngeal Sensors To Monitor Talk Time in People With Aphasia
  • DOI:
    10.1016/j.apmr.2022.08.895
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Samantha Engel;Soumith Sanka;Hyoyoung Jeong;Wei Ouyang;Laura Kinsey;John Rogers;Leora Cherney
  • 通讯作者:
    Leora Cherney
Maternal stress and children’s eating and non-eating related self-regulation
  • DOI:
    10.1016/j.appet.2020.104883
  • 发表时间:
    2021-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Elena Jansen;Muriel Bruchhage;Alexandra Volpe;John Rogers;Jennifer Beauchemin;Viren D’Sa;Sean Deoni;Susan Carnell
  • 通讯作者:
    Susan Carnell
Encouraging underscreened women to have cervical cancer screening: the effectiveness of a computer strategy.
鼓励筛查不足的女性进行宫颈癌筛查:计算机策略的有效性。
  • DOI:
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Elizabeth Campbell;Danna Peterkin;Richard Abbott;John Rogers
  • 通讯作者:
    John Rogers

John Rogers的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Rogers', 18)}}的其他基金

RAPID: Collaborative Research: Data Analytics for Mechano-acoustic and Physiological Monitoring of COVID19 Symptoms
RAPID:协作研究:新冠肺炎症状的机械声学和生理监测数据分析
  • 批准号:
    2031495
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: USA-Singapore Collaborative Research and Education on Strain-engineered Conformable Electronics
EAGER:美国-新加坡关于应变工程适形电子产品的合作研究和教育
  • 批准号:
    1043135
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
2010 NSF-MEXT Young Researchers Exchange Program on Nanotechnology
2010 NSF-MEXT 纳米技术青年研究员交流计划
  • 批准号:
    1057434
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
GOALI: 3D Nanomanufacturing with Rubber Stamps and Conformable Phase Masks
GOALI:使用橡胶印章和适形相位掩模进行 3D 纳米制造
  • 批准号:
    0355532
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NIRT: Printed Semiconducting Carbon Nanotube Arrays for High Performance Flexible Plastic Electronic Systems
NIRT:用于高性能柔性塑料电子系统的印刷半导体碳纳米管阵列
  • 批准号:
    0403489
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Plant Vacuole Biogenesis and Function
植物液泡的生物发生和功能
  • 批准号:
    9974429
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Workshop on the Assembly of Gondwana
冈瓦纳组装研讨会
  • 批准号:
    9305276
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Role of Law in Shaping Ethnic Identity and Conflict
法律在塑造民族认同和冲突中的作用
  • 批准号:
    9211952
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Sfc Travel Award (In Indian Currency) For Collaboration on Manuscripts Dealing With Studies on Precambrian of Southern India
证监会旅游奖(以印度货币计),表彰其在印度南部前寒武纪研究手稿方面的合作
  • 批准号:
    8406642
  • 财政年份:
    1984
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Precambrian of South India
南印度前寒武纪
  • 批准号:
    7905723
  • 财政年份:
    1979
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

液泡膜定位的水稻钾转运蛋白OsHAK25调控钾素利用效率的分子生理机制
  • 批准号:
    32302655
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
TT3.2通过自噬体-液泡途径调控水稻盐胁迫抗性的分子机制研究
  • 批准号:
    32301745
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
拟南芥RABG3与ATG8互作调控自噬体与液泡融合的分子机制研究
  • 批准号:
    32370352
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
DGK4介导调控梨不亲和花粉管死亡过程中液泡裂变机制
  • 批准号:
    32370340
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
苹果激酶MdCDPK1调控液泡H+/Al3+交换应答铝胁迫的分子机制研究
  • 批准号:
    32372674
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

The plant-like vacuole of Toxoplasma gondii
弓形虫的植物样液泡
  • 批准号:
    8385516
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
The plant-like vacuole of Toxoplasma gondii
弓形虫的植物样液泡
  • 批准号:
    8258564
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
The plant-like vacuole of Toxoplasma gondii
弓形虫的植物样液泡
  • 批准号:
    8585022
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
The plant-like vacuole of Toxoplasma gondii
弓形虫的植物样液泡
  • 批准号:
    8775630
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
MITOCHONDRIAL BIOGENESIS DURING CARDIAC DEVELOPMENT
心脏发育过程中的线粒体生物发生
  • 批准号:
    8172289
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了