Convection Parameterization and Climate Simulation in the National Center for Atmospheric Research (NCAR) Community Climate System Model
国家大气研究中心 (NCAR) 社区气候系统模型中的对流参数化和气候模拟
基本信息
- 批准号:0204798
- 负责人:
- 金额:$ 46.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-05-01 至 2006-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Two deficiencies in the NCAR Community Climate System Model (CCSM) are believed to be related to the parameterization of convection in the model. The model is thus biased toward weak intraseasonal variability in the tropical atmosphere and excessive precipitation in the Arabian Peninsula, compared to observations. Because of the wide use of the CCSM, it is important to conduct research to address them. The goal of this research project is to address these issues by focusing on convective parameterization in the model. Specifically, the investigation aims to achieve the following fundamental scientific objectives: (i) Understand how convection interacts with the large-scale processes in different climate regimes; (ii) Incorporate observational data to improve convective parameterization in CCSM; (iii) Improve the simulated temporal variability of convection and the atmospheric state in CCSM; (iv) Determine the cause of the erroneous precipitation simulation over the Arabian Peninsula in CCSM and eliminate it.The basic research tools used in this work are the NCAR CCM3, which is the atmospheric component of CCSM, and the Zhang-McFarlane convection scheme, together with field observational data from different convection regimes in the tropics and midlatitudes. Simulations with improved convective parameterization will be analyzed using statistical and composite techniques to examine the improvement in the tropical intraseasonal variability. Systematic initial tendency error analysis will be applied to simulations from a series of carefully designed numerical experiments to understand the causes of large summer precipitation bias in the Arabian Peninsula in CCM3. The research should result in an improved convective parameterization, a better understanding of the role of convection and a better simulation in tropical climate and its variability in the NCAR CCM3. This research is important because it has potential to improve climate predictions and projections, which are of great value to world societies.
NCAR 社区气候系统模型 (CCSM) 的两个缺陷被认为与模型中对流参数化有关。因此,与观测结果相比,该模型偏向热带大气的弱季节内变化和阿拉伯半岛的过量降水。由于 CCSM 的广泛使用,开展研究来解决这些问题非常重要。该研究项目的目标是通过关注模型中的对流参数化来解决这些问题。具体而言,该调查旨在实现以下基本科学目标:(i)了解对流如何与不同气候状况下的大尺度过程相互作用; (ii) 纳入观测数据以改进 CCSM 中的对流参数化; (iii) 改进 CCSM 中对流和大气状态的模拟时间变化; (iv) 确定CCSM中阿拉伯半岛降水模拟错误的原因并消除它。本工作使用的基础研究工具是NCAR CCM3(CCSM的大气组成部分)和Zhang-McFarlane对流方案,以及热带和中纬度地区不同对流状况的现场观测数据。将使用统计和综合技术对改进的对流参数化模拟进行分析,以检查热带季节内变化的改善情况。系统的初始趋势误差分析将应用于一系列精心设计的数值实验的模拟中,以了解CCM3中阿拉伯半岛夏季降水大偏差的原因。该研究应改进对流参数化,更好地理解对流的作用,并更好地模拟热带气候及其在 NCAR CCM3 中的变化。这项研究很重要,因为它有潜力改善气候预测和预测,这对世界社会具有巨大价值。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guang Zhang其他文献
Regularized Scatter Measure for Linear Feature Extraction
用于线性特征提取的正则化散点测量
- DOI:
10.1109/icicic.2007.474 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Weixiang Liu;Kehong Yuan;Guang Zhang;Shaowei Jia;Ping Xiao - 通讯作者:
Ping Xiao
Water harvesting from soils by light-to-heat induced evaporation and capillary water migration
通过光热诱导蒸发和毛细管水迁移从土壤中收集水
- DOI:
10.1016/j.applthermaleng.2020.115417 - 发表时间:
2019-11 - 期刊:
- 影响因子:6.4
- 作者:
Xiaotian Li;Guang Zhang;Chao Wang;Lichen He;Yantong Xu;Rong Ma;Wei Yao - 通讯作者:
Wei Yao
The non‑canonical functions of telomerase reverse transcriptase gene GlTert on regulating fungal growth, oxidative stress, and ganoderic acid biosynthesis in Ganoderma lucidum
端粒酶逆转录酶基因GlTert调节灵芝真菌生长、氧化应激和灵芝酸生物合成的非经典功能
- DOI:
10.1007/s00253-021-11564-9 - 发表时间:
2021 - 期刊:
- 影响因子:5
- 作者:
Guang Zhang;Chaohui Zhang;Doudou Leng;Peng Yan;Zhenhe Wang;Mingxia Zhang;Zhongwei Wu - 通讯作者:
Zhongwei Wu
Characteristics of cavitation evolution through a butterfly valve under transient regulation
瞬态调节下蝶阀空化演化特征
- DOI:
10.1063/5.0137019 - 发表时间:
2023-01 - 期刊:
- 影响因子:4.6
- 作者:
Guang Zhang;Wei Wei Wang;Hao tian Zhang;Heuy-Dong Kim;Zhe Lin - 通讯作者:
Zhe Lin
Development of Portable Electronic Nose for VOC Detection
用于VOC检测的便携式电子鼻的研制
- DOI:
10.4028/www.scientific.net/amm.568-570.420 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Guang Zhang;Xiao Mei Zhang;Jian Jun Jin;P. Zhou;J. Tong - 通讯作者:
J. Tong
Guang Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guang Zhang', 18)}}的其他基金
Process-oriented Investigation of Double InterTropical Convergence Zone (ITCZ) Biases in National Center for Atmospheric Research Community Earth System Model (NCAR CESM)
国家大气研究中心社区地球系统模型 (NCAR CESM) 中双热带辐合带 (ITCZ) 偏差的面向过程调查
- 批准号:
2054697 - 财政年份:2021
- 资助金额:
$ 46.44万 - 项目类别:
Standard Grant
Evaluating Convective Parameterization Schemes and Their Scale-awareness Using Simulated Convection in a Hierarchy of Models
使用模型层次结构中的模拟对流评估对流参数化方案及其尺度感知
- 批准号:
1549259 - 财政年份:2016
- 资助金额:
$ 46.44万 - 项目类别:
Standard Grant
Collaborative Research: Evaluating the Roles of Factors Critical to MJO Simulations Using the NCAR CAM3 with Deterministic and Stochastic Convection Parameterization Closures
协作研究:使用具有确定性和随机对流参数化闭包的 NCAR CAM3 评估 MJO 模拟的关键因素的作用
- 批准号:
1015964 - 财政年份:2011
- 资助金额:
$ 46.44万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Climate Feedbacks and 3-D Global Warming Patterns in Global General Circulation Climate Models
合作研究:了解全球环流气候模型中的气候反馈和 3-D 全球变暖模式
- 批准号:
0832915 - 财政年份:2008
- 资助金额:
$ 46.44万 - 项目类别:
Standard Grant
Toward Eliminating the Double Inter-Tropical Convergence Zone and Improving El Nino/Southern Oscillation Simulation in the NCAR Community Climate System Model Version 3 (CCSM3)
消除双热带辐合带并改进 NCAR 社区气候系统模型版本 3 (CCSM3) 中的厄尔尼诺/南方涛动模拟
- 批准号:
0601781 - 财政年份:2006
- 资助金额:
$ 46.44万 - 项目类别:
Continuing Grant
Parameterization of Convective Momentum Transport Using Cloud Resolving and Single Column Models
使用云解析和单柱模型对对流动量传输进行参数化
- 批准号:
9911249 - 财政年份:2000
- 资助金额:
$ 46.44万 - 项目类别:
Continuing Grant
Investigation of the Warm Pool Surface Heat Budget and Validation of Atmospheric GCMs using TOGA COARE Data
使用 TOGA COARE 数据研究暖池表面热量收支并验证大气 GCM
- 批准号:
9525800 - 财政年份:1996
- 资助金额:
$ 46.44万 - 项目类别:
Continuing Grant
相似国自然基金
一个适用于气候模拟的深对流参数化方案的设计及评估
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
积云对流参数化对全球气候模式分辨率的适应性研究
- 批准号:41805069
- 批准年份:2018
- 资助金额:26.5 万元
- 项目类别:青年科学基金项目
气候模式海洋低云模拟问题分析和改进
- 批准号:41775098
- 批准年份:2017
- 资助金额:68.0 万元
- 项目类别:面上项目
气候模式不同对流参数化方案结构性差异研究
- 批准号:41675101
- 批准年份:2016
- 资助金额:68.0 万元
- 项目类别:面上项目
积云对流参数化方案的集合优化及其对我国南方夏季降水的模拟
- 批准号:41605079
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: HDR Elements: Software for a new machine learning based parameterization of moist convection for improved climate and weather prediction using deep learning
合作研究:HDR Elements:基于新机器学习的湿对流参数化软件,利用深度学习改进气候和天气预报
- 批准号:
1835769 - 财政年份:2018
- 资助金额:
$ 46.44万 - 项目类别:
Standard Grant
Collaborative Research: HDR Elements: Software for a new machine learning based parameterization of moist convection for improved climate and weather prediction using deep learning
合作研究:HDR Elements:基于新机器学习的湿对流参数化软件,利用深度学习改进气候和天气预报
- 批准号:
1835863 - 财政年份:2018
- 资助金额:
$ 46.44万 - 项目类别:
Standard Grant
CMG COLLABORATIVE RESEARCH: Development of New Statistical Learning Theory and Techniques for Improvement of Convection Parameterization in Climate Models
CMG 合作研究:开发新的统计学习理论和技术以改进气候模型中的对流参数化
- 批准号:
1037829 - 财政年份:2010
- 资助金额:
$ 46.44万 - 项目类别:
Standard Grant
CMG COLLABORATIVE RESEARCH: Development of New Statistical Learning Theory and Techniques for Improvement of Convection Parameterization in Climate Models
CMG 合作研究:开发新的统计学习理论和技术以改进气候模型中的对流参数化
- 批准号:
0721585 - 财政年份:2007
- 资助金额:
$ 46.44万 - 项目类别:
Standard Grant
CMG COLLABORATIVE RESEARCH: Development of New Statistical Learning Theory and Techniques for Improvement of Convection Parameterization in Climate Models
CMG 合作研究:开发新的统计学习理论和技术以改进气候模型中的对流参数化
- 批准号:
0721621 - 财政年份:2007
- 资助金额:
$ 46.44万 - 项目类别:
Standard Grant