ITR/AP COLLABORATIVE RESEARCH: Real Time Optimization for Data Assimilation and Control of Large Scale Dynamic Simulations
ITR/AP 合作研究:大规模动态模拟数据同化和控制的实时优化
基本信息
- 批准号:0121207
- 负责人:
- 金额:$ 80.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-10-01 至 2004-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will create and apply algorithms and software tools for on-line simulations that continuously (1) assimilate sensor data from dynamic physical processes, and (2) generate optimal strategies for their control. A number of critical industrial, scientific, and societal problems stand to benefit from this research such as aerodynamics, energy, geophysics, infrastructure, manufacturing, medicine, chemical process and environmental applications; two of these will be the focus of the current research. In these and many other cases, the underlying models have become capable of sufficient fidelity to yield meaningful predictions, provided unknown parameters (typically initial/boundary conditions, material coefficients, sources, or geometry) can be estimated appropriately using observational data.The critical step is the solution of a large-scale nonlinear optimization problem that is constrained by the simulation equations, typically PDEs or their reduced order models. A data assimilation phase will seek to minimize the mismatch between sensor data and model-based predictions by adjusting unknown parameters of the PDE simulation, and the optimal control phase will find an optimal control strategy based on the updated model.Despite advances in hardware, networks, parallel PDE solvers, large-scale optimization algorithms, and real-time ODE optimization, significant algorithmic and software challenges must be overcome before the ultimate goal of real-time PDE data assimilation and optimal control can be realized. Needed are fundamentally new PDE optimization algorithms that must: (1) run sufficiently quickly to permit decision-making at time scales of interest; (2) scale to the large numbers of variables and constraints that characterize PDE optimization and processors that characterize high-end systems; (3) adjust to different solution accuracy requirements; (4) target time-dependent objectives and constraints; (5) tolerate incomplete, uncertain, or errant data; (6) be capable of bootstrapping current solutions; (7) yield meaningful results when terminated prematurely; and (8) be robust in the face of ill-posedness.To create, apply, and disseminate the enabling technologies for real-time PDE data assimilation and optimal control, the project will: (1) Develop algorithms and tools for real-time data assimilation and optimal control that meet the above specifications for a class of important applications. (2) Implement and publicly distribute these algorithms within an object-oriented framework that incorporates problem structure, interfaces easily with high performance PDE solver libraries fosters applicability of our tools to a broad range of real-time data assimilation and optimal control problems, and enables extension of the algorithms without interfering with applications. (3) Apply these algorithms and tools to two critical environmental and industrial problems: modeling and control of chemical vapor deposition (CVD) reactors and of wildland firespread. (4) Interact and work with other user communities to ensure that the algorithms and software we produce are useful across a broad range of applications.
该项目将创建并应用算法和软件工具,以连续(1)从动态物理过程中吸收传感器数据,以及(2)为其控制生成最佳策略。 许多关键的工业,科学和社会问题将从这项研究中受益,例如空气动力学,能源,地球物理学,基础设施,制造,医学,化学过程和环境应用;其中两个将是当前研究的重点。在这些和许多其他情况下,潜在的模型已经具有足够的忠诚度来产生有意义的预测,提供的未知参数(通常是初始/边界条件,材料系数,源或几何形状)可以适当地使用观察数据进行适当估计。关键步骤是大规模的非线性优化问题的解决方案,即通过模型来构建模型或典型的构建式,或者典型地构建了典型的pd pds pd pds pds pd pd pds。 A data assimilation phase will seek to minimize the mismatch between sensor data and model-based predictions by adjusting unknown parameters of the PDE simulation, and the optimal control phase will find an optimal control strategy based on the updated model.Despite advances in hardware, networks, parallel PDE solvers, large-scale optimization algorithms, and real-time ODE optimization, significant algorithmic and software challenges must be overcome before实时PDE数据同化和最佳控制的最终目标可以实现。所需的是从根本上是新的PDE优化算法,必须:(1)足够快地运行以允许在感兴趣的时间范围内决策; (2)缩放大量的变量和约束,这些变量和约束表征了PDE优化和高端系统表征的处理器; (3)适应不同的解决方案精度要求; (4)目标时间依赖的目标和约束; (5)忍受不完整,不确定或错误数据; (6)能够引导电流解决方案; (7)过早终止时产生有意义的结果; (8)面对不适当的性能,要创建,应用和传播实时PDE数据同化和最佳控制的能力技术,该项目将:(1)开发算法和工具,以实时数据同化和最佳控制,以符合上述重要应用程序类别的规格。 (2)将这些算法实施并在以对象为导向的框架内公开分发,该算法结合了问题结构,与高性能PDE求解器库轻松接口,可以使我们的工具适用于广泛的实时数据同化和最佳控制问题,并启用算法扩展而无需与应用程序进行干扰。 (3)将这些算法和工具应用于两个关键的环境和工业问题:化学蒸气沉积(CVD)反应堆的建模和控制和Wildland Firespread。 (4)与其他用户社区进行互动和合作,以确保我们生产的算法和软件在广泛的应用程序中很有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Keyes其他文献
Stability in a New Destination: Mexican Immigrants in Clark County, Ohio
新目的地的稳定:俄亥俄州克拉克县的墨西哥移民
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
David Keyes - 通讯作者:
David Keyes
Analytic Proofs of Certain MacWilliams Identities
某些麦克威廉斯恒等式的分析证明
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
David Keyes - 通讯作者:
David Keyes
Digital Skill Sets for Diverse Users: A Comparison Framework for Curriculum and Competencies
不同用户的数字技能集:课程和能力的比较框架
- DOI:
10.2139/ssrn.3427252 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Stacey Wedlake;David Keyes;K. Lothian - 通讯作者:
K. Lothian
A Transnational Approach to Understanding Indicators of Mental Health, Alcohol Use and Reproductive Health Among Indigenous Mexican Migrants
了解墨西哥土著移民心理健康、饮酒和生殖健康指标的跨国方法
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:1.9
- 作者:
M. Zúñiga;Pedro Lewin Fischer;D. Cornelius;W. Cornelius;S. Goldenberg;David Keyes - 通讯作者:
David Keyes
Multicultural Communication Awareness for Police
警察的多元文化沟通意识
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
David Keyes - 通讯作者:
David Keyes
David Keyes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Keyes', 18)}}的其他基金
ITR: Collaborative Research - ASE - (sim+dmc): Image-based Biophysical Modeling: Scalable Registration and Inversion Algorithms and Distributed Computing
ITR:协作研究 - ASE - (sim dmc):基于图像的生物物理建模:可扩展配准和反演算法以及分布式计算
- 批准号:
0427464 - 财政年份:2004
- 资助金额:
$ 80.5万 - 项目类别:
Continuing Grant
ITR/AP COLLABORATIVE RESEARCH: Real Time Optimization for Data Assimilation and Control of Large Scale Dynamic Simulations
ITR/AP 合作研究:大规模动态模拟数据同化和控制的实时优化
- 批准号:
0352334 - 财政年份:2003
- 资助金额:
$ 80.5万 - 项目类别:
Standard Grant
WORKSHOP: Parallel CFD'99 International Conference
研讨会:并行 CFD99 国际会议
- 批准号:
9907896 - 财政年份:1999
- 资助金额:
$ 80.5万 - 项目类别:
Standard Grant
MDC: A Numerical Laboratory for Multi-Model Multi-Domain Computational Methods in Aerodynamics and Acoustics
MDC:空气动力学和声学多模型多领域计算方法的数值实验室
- 批准号:
9527169 - 财政年份:1995
- 资助金额:
$ 80.5万 - 项目类别:
Continuing Grant
Presidential Young Investigators Award
总统青年研究员奖
- 批准号:
9496309 - 财政年份:1994
- 资助金额:
$ 80.5万 - 项目类别:
Continuing Grant
Advanced Computational Techniques in Boundary Element Analysis
边界元分析中的先进计算技术
- 批准号:
9396327 - 财政年份:1993
- 资助金额:
$ 80.5万 - 项目类别:
Continuing Grant
Advanced Computational Techniques in Boundary Element Analysis
边界元分析中的先进计算技术
- 批准号:
9020733 - 财政年份:1991
- 资助金额:
$ 80.5万 - 项目类别:
Continuing Grant
Presidential Young Investigators Award
总统青年研究员奖
- 批准号:
8957475 - 财政年份:1989
- 资助金额:
$ 80.5万 - 项目类别:
Continuing Grant
Acceleration of Primitive Variable Hydrocodes by the Non- Linear Generalized Minimum Residual Method
非线性广义最小残差法对原始变量水编码的加速
- 批准号:
8707109 - 财政年份:1987
- 资助金额:
$ 80.5万 - 项目类别:
Standard Grant
相似国自然基金
Wip1/AP-1通路介导的CD8+/CD122+ Treg分化在移植排斥中的作用及机制研究
- 批准号:82302004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
HIV-1通过MAPK-Jun/AP-1信号通路促进M-MDSCs细胞扩增及其免疫抑制作用的研究
- 批准号:82360392
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
花生地上结果AP1基因鉴定及调控荚果发育的机理研究
- 批准号:32372137
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
MLIP调控AP-1稳定性促进缺血性心力衰竭合并骨骼肌萎缩的机制研究
- 批准号:82370382
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
MYB转录因子GCR1/2与AP2拮抗调控番茄腺体形成的分子机制
- 批准号:32370376
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: ITR/AP: Towards The Development Of Operational Adjoint Method Based Ensemble Prediction Techniques For El Nino Southern Oscillation
合作研究:ITR/AP:致力于开发基于运算伴随方法的厄尔尼诺南方涛动集合预测技术
- 批准号:
0628690 - 财政年份:2006
- 资助金额:
$ 80.5万 - 项目类别:
Continuing Grant
ITR/AP: Collaborative Research: Modular Ocean Data Assimilation
ITR/AP:合作研究:模块化海洋数据同化
- 批准号:
0625631 - 财政年份:2006
- 资助金额:
$ 80.5万 - 项目类别:
Continuing Grant
ITR/AP:Collaborative Research - Synthesis of High Performance Algorithms for Electronic
ITR/AP:合作研究 - 电子高性能算法综合
- 批准号:
0450462 - 财政年份:2004
- 资助金额:
$ 80.5万 - 项目类别:
Standard Grant
ITR/AP COLLABORATIVE RESEARCH: Real Time Optimization for Data Assimilation and Control of Large Scale Dynamic Simulations
ITR/AP 合作研究:大规模动态模拟数据同化和控制的实时优化
- 批准号:
0352334 - 财政年份:2003
- 资助金额:
$ 80.5万 - 项目类别:
Standard Grant
ITR/AP: Collaborative Research: Modular Ocean Data Assimilation
ITR/AP:合作研究:模块化海洋数据同化
- 批准号:
0341139 - 财政年份:2003
- 资助金额:
$ 80.5万 - 项目类别:
Continuing Grant