Electro/Magnetoencephalography Signal Processing Methods and Performance

脑电图/脑磁图信号处理方法和性能

基本信息

  • 批准号:
    0105334
  • 负责人:
  • 金额:
    $ 39.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-05-01 至 2005-04-30
  • 项目状态:
    已结题

项目摘要

Electro/MagnetoencephalographySignal Processing Methods and PerformanceArye NehoraiEECS DepartmentUniversity of Illinois at ChicagoDetecting electric sources in the brain is important for both understanding its function and for clinical applications. Examples include mapping the brain activities and finding foci of epilepsy activities before surgical treatment. We are developing detection methods that find the sources through computer processing of measurements from arrays of sensors around the head. More specifically, we employ Electro/Magnetoencephalography (E/MEG) sensors that measure electric potentials on the scalp and induced magnetic field outside the head. We are developing several new methods of processing the E/MEG signals, analyzing their performance and validating with real data their applicability, thus contributing to improvements in the use and performance of E/MEG equipment and to increase the capabilities of neurological data processing tools.We hope to solve some of the most currently relevant E/MEG problems: (i) estimating and tracking paths of functional and neuronal connectivity, following the trajectories of cerebral sources, (ii) estimating concentrated and extended sources, in the presence of noise with unknown spatio-temporal covariance, (iii) simultaneously estimating source parameters and tissue conductivities, (iv) developing computationally efficient methods for realistically-shaped head models, which reduce the demands on segmentation algorithms, (v) estimating source parameters for evoked responses with inhomogeneous epochs. We are also deriving performance measures for evaluating the newly proposed methods allowing comparison with existing systems and techniques; identifying those that are effective and helping in the optimum design of future systems. Finally, we are using empirical data sets evaluate and validate methods. These data sets are being derived by the Dr. Jeffrey Lewine's group from Clinical and Cognitive Neurosciences studies where whole-head MEG and high-density EEG are recorded simultaneously. The Nehorai group is developing the processing methods and the two groups will collaborate on their evaluation and validation.
伊利诺伊州的伊利诺伊州的电气/磁脑电标记处理方法和大脑中伊利诺伊州的表演nehoraieecs nehoraieecs nehoraieecs nehoraieecs interyniversity对了解其功能和临床应用都很重要。 例如,在手术治疗前绘制大脑活动和查找癫痫活动的焦点。 我们正在开发检测方法,通过计算机处理来自头部周围传感器阵列的测量值来找到源。更具体地说,我们采用电/磁脑电图(E/MEG)传感器,测量头皮上的电势并在头部外部诱导的磁场。 我们正在开发几种处理E/MEG信号的新方法,分析其性能并使用实际数据验证其适用性,从而有助于改善E/MEG设备的使用和性能,并提高神经数据处理工具的能力。我们希望解决一些当前相关的E/MEG问题:(I)估计和跟踪NEURONS的功能和NEURONS的连接,并遵循NEURONS的连接性,并遵循NEURONS的连接性,并且源,(ii)估计集中和扩展的来源,存在具有未知时空协方差的噪声,(iii)同时估计源参数和组织电导率,(iv)开发用于现实形状的头部模型的计算有效方法,从而减少了分裂质量的要求,以减少分裂质量的要求(v)估计参数(v)估计的参数(v)时代。我们还采用了用于评估新提出的方法的绩效指标,以便与现有系统和技术进行比较;识别那些有效的人并帮助未来系统的最佳设计。最后,我们正在使用经验数据集评估和验证方法。 这些数据集是由Jeffrey Lewine博士的临床和认知神经科学研究得出的,这些研究同时记录了全头MEG和高密度EEG。 Nehorai小组正在开发处理方法,两组将在其评估和验证方面进行协作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arye Nehorai其他文献

Riemannian Geometric Optimization Methods for Joint Design of Transmit Sequence and Receive Filter on MIMO Radar
MIMO雷达发射序列和接收滤波器联合设计的黎曼几何优化方法
  • DOI:
    10.1109/tsp.2020.3022821
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Jie Li;Guisheng Liao;Yan Huang;Zhen Zhang;Arye Nehorai
  • 通讯作者:
    Arye Nehorai

Arye Nehorai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arye Nehorai', 18)}}的其他基金

CIF: Small: Algorithms, Performance and Design for Sparsity-Enforced Learning
CIF:小型:稀疏性强制学习的算法、性能和设计
  • 批准号:
    1014908
  • 财政年份:
    2010
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Standard Grant
CIF: IHCS: Medium: Collaborative Research: Design and Implementation of Position-Encoded 3D Microarrays
CIF:IHCS:媒介:协作研究:位置编码 3D 微阵列的设计和实现
  • 批准号:
    0963742
  • 财政年份:
    2010
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Standard Grant
SENSORS: Collaborative Research: Biochemical Sensors and Data Processing for Security Applications
传感器:协作研究:用于安全应用的生化传感器和数据处理
  • 批准号:
    0630734
  • 财政年份:
    2006
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Continuing Grant
SENSORS: Collaborative Research: Biochemical Sensors and Data Processing for Security Applications
传感器:协作研究:用于安全应用的生化传感器和数据处理
  • 批准号:
    0330342
  • 财政年份:
    2003
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Continuing Grant
Magnetoencephalography Performance Measures and Optimizations
脑磁图性能测量和优化
  • 批准号:
    9615590
  • 财政年份:
    1997
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Continuing Grant
New Methods and Results in Signal Processing and System Identification
信号处理和系统辨识的新方法和结果
  • 批准号:
    9122753
  • 财政年份:
    1992
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Continuing Grant
Investigation of Constrained Adaptive Algorithms for Narrow-Band Signals with Additive White Noise
带加性白噪声的窄带信号约束自适应算法研究
  • 批准号:
    8604351
  • 财政年份:
    1986
  • 资助金额:
    $ 39.43万
  • 项目类别:
    Standard Grant

相似海外基金

Neuroprotective Potential of Vaccination Against SARS-CoV-2 in Nonhuman Primates
SARS-CoV-2 疫苗对非人灵长类动物的神经保护潜力
  • 批准号:
    10646617
  • 财政年份:
    2023
  • 资助金额:
    $ 39.43万
  • 项目类别:
Characterizing and modulating motor cortical dynamics underlying rapid sequence learning in primates
表征和调节灵长类动物快速序列学习背后的运动皮层动力学
  • 批准号:
    10677450
  • 财政年份:
    2023
  • 资助金额:
    $ 39.43万
  • 项目类别:
Development of Quantum Magnetic Tunneling Junction Sensor Arrays for Brain Magnetoencephalography (MEG) under Natural Settings
自然环境下脑磁图 (MEG) 量子磁隧道结传感器阵列的开发
  • 批准号:
    10723802
  • 财政年份:
    2023
  • 资助金额:
    $ 39.43万
  • 项目类别:
Network dynamics of sleep-wake states in epilepsy
癫痫睡眠-觉醒状态的网络动力学
  • 批准号:
    10591896
  • 财政年份:
    2023
  • 资助金额:
    $ 39.43万
  • 项目类别:
Decoding mental concept identities using electrocorticography
使用皮层电图解码心理概念身份
  • 批准号:
    10652023
  • 财政年份:
    2023
  • 资助金额:
    $ 39.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了