Dynamics of Partially Hyperbolic Systems

部分双曲系统的动力学

基本信息

  • 批准号:
    0100416
  • 负责人:
  • 金额:
    $ 8.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-08-01 至 2005-07-31
  • 项目状态:
    已结题

项目摘要

This project will investigate the dynamics of partially hyperbolic systems.It is hoped to improve the recent theorem of Pugh and Shub by weakening thecenter bunching hypothesis and adapting the proof so that it applies to thepointwise (or Brazilian) version of partial hyperbolicity rather than morestringent uniform assumptions made by Pugh and Shub. I also hope to extendthe classes of partially hyperbolic maps within which the hypotheses of thePugh-Shub theorem are known to hold generically by studying compact groupextensions of the compact group extensions already studied by myself andWilkinson. In addition I plan to continue my work with Paternain onmagnetic flows and to collaborate with Hasselblatt and Wilkinson on astudy of Lyapunov exponents for geodesic flows.This project will study the dynamics of partially hyperbolic systems.A differentiable dynamical system consists of a differentiable manifold whichrepresents the possible states of the system and a differentiable map of themanifold to itself which represents the evolution of the system from itscurrent state to its next state. A basic mechanism which tends to producechaotic behavior is for the derivative of the map to stretch vectors insome directions and to shrink vectors in the complementary directions.Such behavior is called hyperbolicity. The system is called partiallyhyperbolic if in addition to the expanding and contracting directionsthat are stretched and shrunk there is a third direction which is stretchedless than the expanding direction and shrunk less than the contracting.It has long been suspected that most partially hyperbolic systems shouldhave the same chaotic behavior as fully hyperbolic systems.In the 1990's the work of Pugh and Shub (in collaboration with Graysonand Wilkinson) has made it possible to prove this in considerable generality.I aim to extend their work, by weakening the hypotheses in their main theoremand studying a number of particular examples of partially hyperbolic systems.
该项目将研究部分双曲线系统的动态。希望通过削弱thecenter束假设并适应证据,以改善PUGH和SHUB的最新定理,以便它适用于Pointis(或巴西)的部分均匀性,而不是偏向均匀的均匀性。 Pugh和Shub做出的假设。我还希望扩展部分双曲线图的类别,其中众所周知,通过研究我本人和维尔金森已经研究的紧凑型组扩展的紧凑型组扩展,可以通过研究pogh-shub定理的假设。此外,我计划继续与Paternain onmagnetic流量进行合作,并与Hasselblatt和Wilkinson合作,以在Lyapunov指数的敏捷中进行地理流量。系统的可能状态和themanifold的可区分映射到本身,这代表了系统从其电流状态到下一个状态的演变。一种倾向于产生回教行为的基本机制是对地图的衍生物伸展向量的衍生物,并在互补方向上缩小向量。如果除了扩展和收缩方向,该系统被称为部分流血,并且缩小了第三个方向,它比扩展的方向伸展,而缩小的方向则比缩小的方向比收缩更小。混乱的行为是完全夸张的系统。部分双曲线系统的许多特定示例。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Keith Burns其他文献

Anosov magnetic flows, critical values and topological entropy
阿诺索夫磁流、临界值和拓扑熵
  • DOI:
    10.1088/0951-7715/15/2/305
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Keith Burns;Gabriel P Paternain
  • 通讯作者:
    Gabriel P Paternain
Stable ergodicity of skew products ( Ergodicité stable des produits croisés )
倾斜产品的稳定遍历性 (Ergodicité stable des produits croisés)
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Keith Burns;A. Wilkinson
  • 通讯作者:
    A. Wilkinson

Keith Burns的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Keith Burns', 18)}}的其他基金

Conference on "Global Dynamics Beyond Uniform Hyperbolicity"
“超越统一双曲性的全球动力学”会议
  • 批准号:
    1314157
  • 财政年份:
    2013
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Standard Grant
Dynamics of partially hyperbolic systems and geodesic flows
部分双曲系统和测地流的动力学
  • 批准号:
    1001959
  • 财政年份:
    2010
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
Research in dynamics
动力学研究
  • 批准号:
    0701140
  • 财政年份:
    2007
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
Dynamics of Partially Hyperbolic Systems
部分双曲系统的动力学
  • 批准号:
    0408704
  • 财政年份:
    2004
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geodesic Flows On Manifolds With No Conjugate Points and Related Topics
数学科学:无共轭点流形上的测地流及相关主题
  • 批准号:
    8896198
  • 财政年份:
    1988
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geodesic Flows On Manifolds With No Conjugate Points and Related Topics
数学科学:无共轭点流形上的测地流及相关主题
  • 批准号:
    8702803
  • 财政年份:
    1987
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Standard Grant

相似国自然基金

高稳定铂/高熵催化剂的可控构筑及其丙烷部分氧化制氢研究
  • 批准号:
    22378073
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于Gd-BOPTA功能MRI和代谢组学预测肝部分切除术后肝衰竭风险的机制及多组学智能模型构建
  • 批准号:
    82371916
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
通过基矢光前量子化方法研究K介子的部分子分布
  • 批准号:
    12305095
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
三维偏振部分相干光的自旋-轨道角动量特性及其应用研究
  • 批准号:
    62305146
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
部分还原的贵金属氧化物助催化剂构建及其光催化PET塑料重整性能研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:

相似海外基金

wild behavior of partially hyperbolic dynamics and its smoothness
部分双曲动力学的狂野行为及其平滑度
  • 批准号:
    18K03276
  • 财政年份:
    2018
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The shape of chaos: geometric advances in partially hyperbolic dynamics
混沌的形状:部分双曲动力学的几何进展
  • 批准号:
    DP180101385
  • 财政年份:
    2018
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Discovery Projects
New Directions in Partially Hyperbolic Dynamics
部分双曲动力学的新方向
  • 批准号:
    1664719
  • 财政年份:
    2017
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
New Directions in Partially Hyperbolic Dynamics
部分双曲动力学的新方向
  • 批准号:
    1823150
  • 财政年份:
    2017
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
Absolute continuity of foliations and ergodicity for smooth measure preserving partially hyperbolic dynamics
叶状结构的绝对连续性和遍历性,用于保持部分双曲动力学的平滑测量
  • 批准号:
    24740105
  • 财政年份:
    2012
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了