Operator Algebras and Noncommutative Topology
算子代数和非交换拓扑
基本信息
- 批准号:0070763
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTBlackadarBlackadar will study a range of questions concerning the structure of variousclasses of operator algebras and their relation to noncommutative topology.Topics will include generalized inductive limits of finite-dimensionalC*-algebras and the structure of nuclear C*-algebras, semiprojectivity,nonstable K-theory and the Universal Coefficient Theorem, and bivariantcohomology theories on C*-algebras and their dense subalgebras.An idea which has revolutionized the study of operator algebras in recentyears, and which has led to some spectacular applications throughoutmathematics and mathematical physics, is to view operator algebras asgeneralizations of topological spaces, or more precisely the set ofcontinuous functions on a topological space; the principal new featureis that the multiplication of "functions" is no longer assumed to becommutative. It has long been recognized that operator algebras provide the "right" framework for the mathematical formulation of quantum mechanics, and it has been increasingly recognizedrecently that noncommutative "function spaces" (operator algebras)arise naturally in problems in subjects as diverse as knot theory(with applications to the structure of DNA and other molecules, as wellas mathematical physics), dynamical systems, and even mathematical logic.It has become apparent that it will be possible to give an explicitdescription of all operator algebras in large classes, including mostalgebras arising in applications, far beyond what was thought possibleonly a few years ago. This project concerns some of the centralremaining problems in the classification of one particularly importantclass, the nuclear C*-algebras. Understanding the mathematical structuresthat can occur will give great insight into the nature and behavior ofthe associated applied problems.
Abstractblackadarblackadar将研究一系列有关操作员代数的结构的问题及其与非交通性拓扑的关系。主题将包括有限的二量化和核C* - 核C* - 核心,非稳定性Khearory and thar and of comiant and thar and thar and thar and of有限的电位限制的通用电感限制。 C*-Algebras及其茂密的次级代理。一种彻底改变了对循环系统的操作员代数研究的想法,这导致了整个跨膜和数学物理学的某些观点应用,是为了查看操作员代数Asergebras Aseralizations of Generallizations of topological Space,或者更明确地在一系列拓扑函数上均可使用拓扑函数;不再假定“函数”乘法的主要新功能。 It has long been recognized that operator algebras provide the "right" framework for the mathematical formulation of quantum mechanics, and it has been increasingly recognizedrecently that noncommutative "function spaces" (operator algebras)arise naturally in problems in subjects as diverse as knot theory(with applications to the structure of DNA and other molecules, as wellas mathematical physics), dynamical systems, and even mathematical逻辑。显然,可以在大型类别中对所有操作员代数(包括在应用中产生的大多数级别的代数)进行明确描述,这远远超出了几年前可能的可能。 该项目涉及一个特别重要阶级核C* - 代数的分类中的一些中心问题。 了解可能发生数学结构的结构,将对相关应用问题的性质和行为有充分的了解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce Blackadar其他文献
Bruce Blackadar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce Blackadar', 18)}}的其他基金
West Coast Operator Algebra Seminar; October 2-4, 2003; Alberta, Canada
西海岸算子代数研讨会;
- 批准号:
0335350 - 财政年份:2003
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
U.S.-Japan Joint Seminar: Operator Algebras and Applications
美日联合研讨会:算子代数及其应用
- 批准号:
9815653 - 财政年份:1999
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Mathematical Sciences: Operator Algebras and Noncommutative Topology
数学科学:算子代数和非交换拓扑
- 批准号:
9706982 - 财政年份:1997
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Mathematical Sciences: Operator Algebras and Noncommutative Topology
数学科学:算子代数和非交换拓扑
- 批准号:
9401316 - 财政年份:1994
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Mathematical Sciences: West Coast Operator Algebra Seminar
数学科学:西海岸算子代数研讨会
- 批准号:
9208679 - 财政年份:1992
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Mathematical Sciences: Operator Algebras and Noncommutative Topology
数学科学:算子代数和非交换拓扑
- 批准号:
9016309 - 财政年份:1991
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Operator Algebras and Noncommutative Topology
数学科学:算子代数和非交换拓扑
- 批准号:
8805342 - 财政年份:1988
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
相似国自然基金
代数K理论、代数数论及其在编码密码中的应用
- 批准号:12371035
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
两流体代数模型新拓展及对反常核结构现象的理论研究
- 批准号:12375113
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
几类代数Riccati方程的特殊解的显式表示及其应用
- 批准号:12371380
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
李代数与有限W代数的Whittaker型表示和有限维表示
- 批准号:12371026
- 批准年份:2023
- 资助金额:44 万元
- 项目类别:面上项目
广义四元数代数上的若干超矩阵方程组及应用
- 批准号:12371023
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Discovery Grants Program - Individual
Function algebras and operator algebras arising in noncommutative harmonic analysis
非交换调和分析中出现的函数代数和算子代数
- 批准号:
2599047 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Studentship
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2019
- 资助金额:
$ 9万 - 项目类别:
Discovery Grants Program - Individual