A p-Adic Riemann-Hilbert Correspondence and A p-Adic Theory of Mixed Hodge Modules
p-Adic黎曼-希尔伯特对应和混合Hodge模的p-Adic理论
基本信息
- 批准号:0070711
- 负责人:
- 金额:$ 7.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2001-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for Emerton-NSF 0070711In this project the investigator and his collaborator intend to develop an analogue in the p-adic setting of the Riemann-Hilbert correspondence between perverse sheaves and D-modules on algebraic varieties over the complex numbers. The Hilbert correspondence generalizes De Rham theory, and establishes a deep connection between the topology of a given complex algebraic variety (as encoded in the category of perverse sheaves on the variety) and the behavior of systems of differential operators defined on the variety (which are encoded as D-modules on the variety; that is, as sheaves of modules over the sheaf of rings of differential operators on the variety). The proposed p-adic analogue would perform a similar function for varieties over the p-adic numbers. It would yield an equivalence between the (currently conjectural) category of ``crystalline perverse sheaves'' on such a variety, and the (again conjectural) category of weakly admissible filtered D-modules equipped with a Frobenius operator. The category of crystalline perverse sheaves is believed to carry both geometric and also arithmetic information about the variety to which it is attached, and would for example be a natural ingredient in a p-adic analogue of Beilinson's theory of regulators. This gives some hint of the important role that such a category of sheaves can be expected to play in the local analysis at p of systems of Diophantine equations.The problem of solving equations is one of the most basic in mathematics, going back at least to the mathematicians of ancient Greece, such as Diophantus. He studied the problem of solving equations in whole numbers; such equations are now known as Diophantine equations. Since the work of Descartes and Fermat, it has been understood that geometry provides a powerful tool for analyzing systems of equations, even if one is at first more interested in the equations from an arithmetic point of view. For this reason, the development of powerful geometric tools is important for progress in the theory of Diophantine equations. In this project, the investigator and his collaborator intend to develop such tools, by extending known techniques in the usual so-called archimedean geometry to the context of non-archimedean, or p-adic, geometry. This geometry, which has a strong arithmetic flavor, provides a crucial geometric setting for the analysis of Diophantine equations, and these techniques are expected to yield several new developments in that analysis. Such developments are important not only because they enrich what continues to be one of the center pieces of the mathematical tradition, but because the theory of Diophantine equations has deep interconnections with the theory of discrete processes, and especially with the theory of codes, so that progress in theory of Diophantine equations can be expected to yield progress in these fields.
EMERTON-NSF 0070711的摘要该项目研究者及其合作者打算在反式滑轮和代数品种上的Riemann-Hilbert对应的P-ADIC环境中开发一个类似物。 希尔伯特对应关系概括了de rham理论,并建立了给定复杂的代数品种的拓扑结合(如多样性上的不正正支线束类别中编码)与在多样性上定义的差分运算符系统的行为(在多样性上编码为d-Modules;是在多样性上的d-Modules;是模块的sheeavers oferters oferters of shering of shee pose of she eaf of she eaf shorings of shering conse of she eaf shorings of sherings of shorings s rope shorings s rying shorings s rying shorings, 所提出的P-Adic类似物将对P-ADIC数字的品种执行相似的功能。 它将在这种品种上的``晶体变形带轮''的(当前猜想)类别与配备Frobenius操作员配备的弱化过滤的D-Modules的(再次猜测)类别的类别之间产生等效性。 据信,晶体变形带轮的类别既具有几何和算术信息,又具有算术信息,例如,在贝林森的调节剂理论的p addic类似物中,将是一种天然成分。 这表明了重要的作用,即可以期望这样一类系带系带的系带在二只方程系统的局部分析中发挥作用。解决方程式的问题是数学上最基本的问题之一,至少可以追溯到古希腊的数学家,例如养生。 他研究了整体求解方程的问题。现在,这些方程称为二磷剂方程。由于笛卡尔和费马特的工作,也已经理解,几何形状为分析方程式系统提供了有力的工具,即使起初从算术的角度对方程更感兴趣,也提供了一个强大的工具。 因此,强大的几何工具的开发对于二磷理论的进步很重要。 在这个项目中,调查员及其合作者打算通过将已知的Archimedean几何形状中的已知技术扩展到非Archimedean或P-ADIC几何形状的背景。这种几何形状具有强烈的算术风味,为分析二磷酸方程提供了至关重要的几何环境,并且这些技术有望在该分析中产生一些新的发展。 这些发展不仅是因为它们丰富了数学传统的中心部分之一,而且因为二聚体方程式的理论与离散过程理论,尤其是代码理论具有深厚的互连,因此可以预期,在这些领域中,可以预期,在这些领域的进展中,这种进展可以产生进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Emerton其他文献
Matthew Emerton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Emerton', 18)}}的其他基金
Arithmetic Aspects of the Langlands Program
朗兰兹纲领的算术方面
- 批准号:
2201242 - 财政年份:2022
- 资助金额:
$ 7.93万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Geometric Structures in the p-Adic Langlands Program
FRG:合作研究:p-Adic Langlands 计划中的几何结构
- 批准号:
1952705 - 财政年份:2020
- 资助金额:
$ 7.93万 - 项目类别:
Continuing Grant
Automorphic Forms and Galois Representations
自守形式和伽罗瓦表示
- 批准号:
1902307 - 财政年份:2019
- 资助金额:
$ 7.93万 - 项目类别:
Continuing Grant
P-adic Aspects of the Langlands Program
朗兰兹纲领的 P-adic 方面
- 批准号:
1601871 - 财政年份:2016
- 资助金额:
$ 7.93万 - 项目类别:
Continuing Grant
p-adic aspects of the Langlands program
朗兰兹纲领的 p-adic 方面
- 批准号:
1303450 - 财政年份:2013
- 资助金额:
$ 7.93万 - 项目类别:
Continuing Grant
P-adic aspects of the Langlands program
朗兰兹计划的 P-adic 方面
- 批准号:
1249548 - 财政年份:2012
- 资助金额:
$ 7.93万 - 项目类别:
Continuing Grant
Special Meeting: Galois Representations, Diophantine Equations, and Automorphic Forms
特别会议:伽罗瓦表示、丢番图方程和自守形式
- 批准号:
1101503 - 财政年份:2011
- 资助金额:
$ 7.93万 - 项目类别:
Standard Grant
P-adic aspects of the Langlands program
朗兰兹计划的 P-adic 方面
- 批准号:
1002339 - 财政年份:2010
- 资助金额:
$ 7.93万 - 项目类别:
Continuing Grant
p-adic Aspects of the Langlands Program
朗兰兹纲领的 p-adic 方面
- 批准号:
0701315 - 财政年份:2007
- 资助金额:
$ 7.93万 - 项目类别:
Continuing Grant
Locally analytic representation theory and p-adic interpolation
局部解析表示理论和p进插值
- 批准号:
0401545 - 财政年份:2004
- 资助金额:
$ 7.93万 - 项目类别:
Continuing Grant
相似国自然基金
Riemann-Hilbert穿衣方法在多分量可积系统中的应用
- 批准号:12301308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
特殊初值下可积方程解的长时间渐近分析:Riemann-Hilbert方法
- 批准号:12371249
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
有限温度形变可积核普适类Riemann-Hilbert方法研究
- 批准号:12371257
- 批准年份:2023
- 资助金额:44.00 万元
- 项目类别:面上项目
双正交多项式渐近分析中的向量Riemann-Hilbert问题
- 批准号:12271502
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
非局域可积系统的Riemann-Hilbert方法及相关问题研究
- 批准号:12271488
- 批准年份:2022
- 资助金额:47 万元
- 项目类别:面上项目
相似海外基金
Riemann-Hilbert-Birkhoff対応の拡張
黎曼-希尔伯特-伯克霍夫支持的扩展
- 批准号:
24K06695 - 财政年份:2024
- 资助金额:
$ 7.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Transcendental fiber functors, shift of argument algebras and Riemann-Hilbert correspondence for q-difference equations
q 差分方程的超越纤维函子、变元代数平移和黎曼-希尔伯特对应
- 批准号:
2302568 - 财政年份:2023
- 资助金额:
$ 7.93万 - 项目类别:
Continuing Grant
Asymptotics of Toeplitz determinants, soft Riemann-Hilbert problems and generalised Hilbert matrices (HilbertToeplitz)
Toeplitz 行列式的渐进性、软黎曼-希尔伯特问题和广义希尔伯特矩阵 (HilbertToeplitz)
- 批准号:
EP/X024555/1 - 财政年份:2023
- 资助金额:
$ 7.93万 - 项目类别:
Fellowship
An overconvergent Riemann-Hilbert correspondence
过收敛的黎曼-希尔伯特对应关系
- 批准号:
EP/W018675/1 - 财政年份:2022
- 资助金额:
$ 7.93万 - 项目类别:
Research Grant
"Stokes filtration"を用いた複素構成可能拡大帰納層の特徴付け
使用“斯托克斯过滤”表征复杂的可配置扩展感应层
- 批准号:
22K13902 - 财政年份:2022
- 资助金额:
$ 7.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists