Mathematical Sciences: Invariants for Knots and Links in 3-Manifolds

数学科学:3-流形中的结和链接的不变量

基本信息

  • 批准号:
    9996227
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-12-15 至 2001-08-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Efstratia Kalfagianni其他文献

ALTERNATING SUM FORMULAE FOR THE DETERMINANT AND OTHER LINK INVARIANTS
行列式和其他链接不变量的交替求和公式
  • DOI:
    10.1142/s021821651000811x
  • 发表时间:
    2006-11-01
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Oliver T. Dasbach;D. Futer;Efstratia Kalfagianni;Xiaoxia Lin;N. Stoltzfus
  • 通讯作者:
    N. Stoltzfus
Crosscap numbers and the Jones polynomial
Crosscap 数和琼斯多项式
  • DOI:
    10.1016/j.aim.2015.09.017
  • 发表时间:
    2014-08-19
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Efstratia Kalfagianni;C. Lee
  • 通讯作者:
    C. Lee
Higher degree knot adjacency as obstruction to fibering
较高程度的结邻接会阻碍纤维化
  • DOI:
  • 发表时间:
    2004-03-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Efstratia Kalfagianni;Xiaoxia Lin
  • 通讯作者:
    Xiaoxia Lin
Cosmetic crossings and Seifert matrices
修饰交叉点和 Seifert 矩阵
  • DOI:
    10.4310/cag.2012.v20.n2.a1
  • 发表时间:
    2011-08-15
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    C. Balm;Stefan Friedl;Efstratia Kalfagianni;Mark Powell
  • 通讯作者:
    Mark Powell
Constructions of $q$-hyperbolic knots
$q$-双曲结的构造
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Efstratia Kalfagianni;Joseph M. Melby
  • 通讯作者:
    Joseph M. Melby

Efstratia Kalfagianni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Efstratia Kalfagianni', 18)}}的其他基金

Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
  • 批准号:
    2304033
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Geometric and Quantum Structures of 3-Manifolds
三流形的几何和量子结构
  • 批准号:
    2004155
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Geometric Aspects Knot and 3-manifold Invariants
几何方面结和 3 流形不变量
  • 批准号:
    1708249
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Geometric structures and invariants of links and 3-manifolds
链接和 3 流形的几何结构和不变量
  • 批准号:
    1404754
  • 财政年份:
    2014
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Invariants and geometry of knots and 3-manifolds
结和 3 流形的不变量和几何
  • 批准号:
    1105843
  • 财政年份:
    2011
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Topics in 3-dimensional topology
3 维拓扑主题
  • 批准号:
    0805942
  • 财政年份:
    2008
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Collaborative Research: FRG: Hyperbolic Geometry and Jones Polynomials
合作研究:FRG:双曲几何和琼斯多项式
  • 批准号:
    0456155
  • 财政年份:
    2005
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Knot and 3-manifold invariants and Dehn surgery
结和 3 流形不变量以及 Dehn 手术
  • 批准号:
    0306995
  • 财政年份:
    2003
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Knot and 3-Manifold Invariants, Seifert Surfaces and Dehn Surgery
结和 3 流形不变量、Seifert 曲面和 Dehn 手术
  • 批准号:
    0104000
  • 财政年份:
    2001
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Invariants for Knots and Links in 3-Manifolds
数学科学:3-流形中的结和链接的不变量
  • 批准号:
    9626140
  • 财政年份:
    1996
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant

相似国自然基金

战略与管理研究类:电气科学与工程学科研究方向与关键词优化
  • 批准号:
    52342702
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目
大样本宽距双星的统计性质及科学应用
  • 批准号:
    12373033
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
国际应用系统分析研究学会2023暑期青年科学家项目
  • 批准号:
    52311540127
  • 批准年份:
    2023
  • 资助金额:
    4.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
国际应用系统分析研究学会2023暑期青年科学家项目
  • 批准号:
    22311540123
  • 批准年份:
    2023
  • 资助金额:
    4.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
从电针调节肌-骨内感知平衡机制探索肌骨同治理论科学内涵
  • 批准号:
    82360941
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
  • 批准号:
    0196235
  • 财政年份:
    2000
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
  • 批准号:
    9996368
  • 财政年份:
    1998
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Knot Theory: New Invariants and TheirTopology
数学科学:纽结理论:新不变量及其拓扑
  • 批准号:
    9796130
  • 财政年份:
    1997
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
  • 批准号:
    9704893
  • 财政年份:
    1997
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Algebraic Geometry and Seiberg-Witten Invariants
数学科学:代数几何和 Seiberg-Witten 不变量
  • 批准号:
    9622681
  • 财政年份:
    1996
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了