Data Based Construction of A Multi-Step Predictor for Multivariable Nonlinear Stochastic Systems - With Applications to Soft-Sensing, Process Monitoring and Predictive Control
基于数据的多变量非线性随机系统多步预测器构建 - 应用于软测量、过程监控和预测控制
基本信息
- 批准号:9979873
- 负责人:
- 金额:$ 25.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-09-15 至 2000-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractProposal Title: Data Based Construction of a Multi-Step Predictor for Multivariable Nonlinear Stochastic Systems-with Applications to Soft-Sensing, Process Monitoring and Predictive ControlProposal Number: CTS-9979873Principal Investigator: Jay H. LeeInstitution: Purdue UniversityThe main objective of this research is to develop a framework for using plant data for the development of a reduced-order nonlinear multistep prediction model, capable of predicting a long-term behavior of relevant variables on the basis of incoming measurements, in the presence of both deterministic and stochastic input changes. Such a model is an essential component of the envisioned computer-based system that performs the integrated function of process monitoring, soft sensing, and predictive control. The PI will draw upon the subspace identification paradigm that enables the engineer to build a state-space prediction model directly from input-output data. The proposed research will address the following topics: (1) extension of linear subspace identification to nonlinear stochastic systems, involving the development of a nonlinear projection method for the construction of state-space models, (2) a comparative evaluation of the nonlinear projection-based method against other competing options including the direct time-series based design and the internally recurrent neural network based design, (3) development of a robust model predictive control method for piecewise-linear state-space models, (5) development of a software package for the integrated control scheme, and (6) testing of the developed methods on distillation columns and reactors. The development of a model-based estimator and controller is of great industrial importance, particularly for a process in which control variables are complex functions of process variables such as temperature and composition.
AbstractProposal Title: Data Based Construction of a Multi-Step Predictor for Multivariable Nonlinear Stochastic Systems-with Applications to Soft-Sensing, Process Monitoring and Predictive ControlProposal Number: CTS-9979873Principal Investigator: Jay H. LeeInstitution: Purdue UniversityThe main objective of this research is to develop a framework for using plant data for the development of a reduced-order nonlinear multistep prediction model, capable在存在确定性和随机输入变化的情况下,根据传入的测量来预测相关变量的长期行为。 这样的模型是设想的基于计算机的系统的重要组成部分,该系统执行过程监视,软传感和预测控制的集成功能。 PI将利用子空间标识范例,使工程师可以直接从输入输出数据直接构建状态空间预测模型。 The proposed research will address the following topics: (1) extension of linear subspace identification to nonlinear stochastic systems, involving the development of a nonlinear projection method for the construction of state-space models, (2) a comparative evaluation of the nonlinear projection-based method against other competing options including the direct time-series based design and the internally recurrent neural network based design, (3) development of a robust model predictive control method for piecewise-linear州空间模型,(5)为集成控制方案开发软件包,以及(6)在蒸馏柱和反应堆上测试开发的方法。 基于模型的估计器和控制器的开发具有极大的工业重要性,特别是对于控制变量是过程变量(例如温度和组成)复杂函数的过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jay Lee其他文献
Wenliang Geng, Ying Liu, Tianqi Rong, Jingwen Shao, Bin Li. Characteristics of the Spatio-Temporal Trends and Driving Factors of Industrial Development and Industrial SO2 Emissions Based on Niche Theory: Taking Henan Province as an Example
耿文亮,刘英,荣天琪,邵静文,李斌。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:3.9
- 作者:
Pengyan Zhang;Yu Zhang;Jay Lee;Yanyan Li;Jiaxin Yang;Wenliang Geng;Ying Liu;Tianqi Rong;Jingwen Shao;Bin Li - 通讯作者:
Bin Li
Predictive monitoring and failure prevention of vehicle electronic components and sensor systems
汽车电子元件和传感器系统的预测性监测和故障预防
- DOI:
10.4271/2006-01-0373 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
H. Liao;Jay Lee - 通讯作者:
Jay Lee
Innovative Superhard Materials and Sustainable Coatings for Advanced Manufacturing
用于先进制造的创新超硬材料和可持续涂层
- DOI:
10.1007/1-4020-3471-7 - 发表时间:
2005 - 期刊:
- 影响因子:2.9
- 作者:
Sustainable Coatings;Jay Lee;N. Novikov;V. Turkevich - 通讯作者:
V. Turkevich
Neighborhood Racial Segregation Predict the Spatial Distribution of Supermarkets and Grocery Stores Better than Socioeconomic Factors in Cleveland, Ohio: a Bayesian Spatial Approach
俄亥俄州克利夫兰的社区种族隔离比社会经济因素更能预测超市和杂货店的空间分布:贝叶斯空间方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.9
- 作者:
Ortis Yankey;Jay Lee;R. Gardenhire;E. Borawski - 通讯作者:
E. Borawski
EP1375: VERY LOW ENERGY DIETS PRIOR TO NON-BARIATRIC SURGERY: A SYSTEMATIC REVIEW
- DOI:
10.1016/s0016-5085(22)64047-2 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Tyler Mckechnie;Christopher A. Povolo;Jay Lee;Yung Lee;Aristithes Doumouras;Dennis Hong;Cagla Eskicioglu - 通讯作者:
Cagla Eskicioglu
Jay Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jay Lee', 18)}}的其他基金
EAGER/Cybermanufacturing Systems: Fleet-Sourced Cyber Manufacturing Applications for Improved Transparency and Resilience of Manufacturing Assets and Systems
EAGER/网络制造系统:源自车队的网络制造应用程序,可提高制造资产和系统的透明度和弹性
- 批准号:
1550433 - 财政年份:2015
- 资助金额:
$ 25.73万 - 项目类别:
Standard Grant
I/UCRC FRP: Collaborative Research on Event-based Analytics for Enhanced Prognostics Design in a Big Data Environment
I/UCRC FRP:基于事件的分析的协作研究,以增强大数据环境中的预测设计
- 批准号:
1331669 - 财政年份:2013
- 资助金额:
$ 25.73万 - 项目类别:
Standard Grant
I/UCRC: Collaborative Research on Coupled Models for Prognostics and Health Management
I/UCRC:预测与健康管理耦合模型的合作研究
- 批准号:
1230840 - 财政年份:2012
- 资助金额:
$ 25.73万 - 项目类别:
Standard Grant
I-Corps: Predictive Technology for Failure Prevention of Industrial Machinery
I-Corps:工业机械故障预防的预测技术
- 批准号:
1243425 - 财政年份:2012
- 资助金额:
$ 25.73万 - 项目类别:
Standard Grant
NSF I/UCRC 5-Year Renewal, Phase III
NSF I/UCRC 5 年续展,第三阶段
- 批准号:
1134684 - 财政年份:2011
- 资助金额:
$ 25.73万 - 项目类别:
Continuing Grant
Collaborative Research: Design of Accelerated Prognostics and Health Management
合作研究:加速预测和健康管理的设计
- 批准号:
1127924 - 财政年份:2011
- 资助金额:
$ 25.73万 - 项目类别:
Standard Grant
A Systematic Methodology for Data Validation and Verification for Prognostics Applications
预测应用数据验证和验证的系统方法
- 批准号:
1031986 - 财政年份:2010
- 资助金额:
$ 25.73万 - 项目类别:
Standard Grant
US-Egypt Workshop: Intelligent Decision Support Tools for Prognostics and Health Management
美国-埃及研讨会:用于预测和健康管理的智能决策支持工具
- 批准号:
0929527 - 财政年份:2009
- 资助金额:
$ 25.73万 - 项目类别:
Standard Grant
Developing a Telematics Platform for Bridge Monitoring and Health Prognostics
开发用于桥梁监测和健康预测的远程信息处理平台
- 批准号:
0732457 - 财政年份:2007
- 资助金额:
$ 25.73万 - 项目类别:
Standard Grant
Industry/University Cooperative Research Center for Intelligent Maintenance Systems (IMS): FIVE-Year Renewal Proposal
智能维护系统产学合作研究中心(IMS):五年更新提案
- 批准号:
0639469 - 财政年份:2006
- 资助金额:
$ 25.73万 - 项目类别:
Continuing Grant
相似国自然基金
基于超早期粘-弹-塑性力学行为的3D打印混凝土结构可建造性与失效机制研究
- 批准号:52378250
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于BIM和先进人工智能视觉的工程数字建造与监测
- 批准号:52279145
- 批准年份:2022
- 资助金额:53.00 万元
- 项目类别:面上项目
基于多维时空信息图谱的浙南传统榴式村居形态演变及建造机制研究——以温州市泰顺县为例
- 批准号:52208018
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于3D打印混凝土界面孔隙微变形视觉识别的精度建造方法研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于BIM和先进人工智能视觉的工程数字建造与监测
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Digital Twin Construction Method based on Data Driven Real-World Modeling
基于数据驱动的真实世界建模的数字孪生构建方法
- 批准号:
22K18422 - 财政年份:2022
- 资助金额:
$ 25.73万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Microbial- based targeting of major extracellular matrix components for improved therapy of pancreatic cancer
基于微生物的主要细胞外基质成分靶向以改善胰腺癌的治疗
- 批准号:
10701792 - 财政年份:2022
- 资助金额:
$ 25.73万 - 项目类别:
Novel Ultrasound Based Viscoelasticity Imaging Tool to Reduce Invasive Breast Lesion Biopsy Rate
新型超声粘弹性成像工具可降低乳腺浸润性病变活检率
- 批准号:
10603447 - 财政年份:2022
- 资助金额:
$ 25.73万 - 项目类别:
A scalable electrokinetic flow cytometer and cell sorter
可扩展的动电流式细胞仪和细胞分选仪
- 批准号:
10546934 - 财政年份:2022
- 资助金额:
$ 25.73万 - 项目类别: