RUI: Soliton Propagation and Amplification in Magnetic Thin Films

RUI:磁性薄膜中的孤子传播和放大

基本信息

  • 批准号:
    9972507
  • 负责人:
  • 金额:
    $ 11.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-09-15 至 2005-08-31
  • 项目状态:
    已结题

项目摘要

9972507ZaspelThis is a grant under the Research at Undergraduate Institutions (RUI) program. It also involves an international collaboration with the Ukraine. The focus of the research is the theoretical study of magnetic microwave envelope soliton propagation in magnetic thin films. In general, a soliton occurs in a nonliner system as a result of a balance of dispersive effects, which tends to broaden a pulse, and the narrowing effects from nonlinearities. Solitons have been produced in both optical fibers and in magnetic thin films, and they have potential applications in the fields of information processing and communications systems owing to their ability to propagate large distances without changing shape. In the laboratory magnetic microwave envelope solitons can be produced from an initial rectangular input pulse, which changes shape as it propagates until the soliton forms. The fully formed soliton has been modeled by the nonlinear Schroedinger (NLS) equation, but recent experimental results indicate that this may not be an adequate model. For this reason, this project will study a model of soliton formation and propagation when higher order terms are included in the NLS equation, which has explained experimental data not accounted for by the standard NLS theory. Additional exact solutions of the higher order NLS equations will be obtained and these will be used to develop a theory of soliton formation in thin films. Experimentally it can be observed how far the pulse must propagate until it developes into a soliton. Both analytical and numerical techniques will be used to determine this propagation distance in terms of parameters in the higher order NLS model. Dissipation from spin wave damping is an important effect in magnetic thin films that cannot be neglected. Therefore, the effect of dissipation on the propagation of the exact solutions will be considered. This part of the research will also include higher order dissipative terms. Recently, magnetic microwave envelope solitons have been amplified in a region of localized parallel pumping. A nonlinear theory of soliton amplification and formation by localized pumping will be developed. This is a grant under the Research at Undergraduate Institutions (RUI) program. It also involves an international collaboration with the Ukraine. The focus of the research is the theoretical study of magnetic microwave envelope soliton propagation in magnetic thin films. Besides addressing a fundamental issue in nonlinear physics, the project may find applications in information processing and communications.
9972507zaspelthis是本科机构(RUI)计划的研究基金。 它还涉及与乌克兰的国际合作。 该研究的重点是磁性薄膜中磁性微波包膜传播的理论研究。 通常,由于分散效应的平衡,孤子发生在非线器系统中,这倾向于扩大脉冲,而非线性的效果变窄。 在光纤和磁性薄膜中都生产了孤子,并且由于它们在不变形状而不变的情况下传播大距离的能力,它们在信息处理和通信系统领域具有潜在的应用。 在实验室磁性微波包膜中,可以从初始矩形输入脉冲产生孤子,该脉冲会随着传播而改变形状,直到孤子形成。 完全形成的孤子是通过非线性schroedinger(NLS)方程进行了建模的,但是最近的实验结果表明,这可能不是一个足够的模型。 因此,当NLS方程中包括高阶项时,该项目将研究孤子形成和传播的模型,该方程中的高阶项解释了标准NLS理论未考虑的实验数据。 将获得高阶NLS方程的其他精确溶液,并将使用这些溶液来开发薄膜中的孤子形成理论。 在实验上,可以观察到脉冲必须传播到孤子中,必须传播多远。 分析技术和数值技术都将用于在高阶NLS模型中根据参数来确定这种传播距离。 自旋波阻尼的耗散是无法忽略的磁性薄膜中的重要效果。 因此,将考虑耗散对确切溶液传播的影响。 研究的这一部分还将包括高阶耗散术语。 最近,在局部平行泵送区域中,磁微波包膜已扩增。 通过局部抽水的孤子扩增和形成的非线性理论将开发出来。这是本科机构(RUI)计划的研究基金。 它还涉及与乌克兰的国际合作。 该研究的重点是磁性薄膜中磁性微波包膜传播的理论研究。 除了解决非线性物理学中的基本问题外,该项目还可以在信息处理和通信中找到应用程序。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Craig Zaspel其他文献

Craig Zaspel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

液晶指向矢传播孤子的光学调控规律研究
  • 批准号:
    62175206
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于分数阶效应的线性与非线性光波传播行为研究
  • 批准号:
    11704339
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
凝聚超冷量子气体中弱光孤子的形成与传播特性研究
  • 批准号:
    11504272
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
超冷里德堡原子气体中光的非线性传播效应研究
  • 批准号:
    11474099
  • 批准年份:
    2014
  • 资助金额:
    79.0 万元
  • 项目类别:
    面上项目
周期量级激光脉冲在非线性介质中传播特性研究
  • 批准号:
    11175158
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Application of high-speed flame propagation mechanism by vortex filament soliton to hydrogen and ammonia combustion fields toward decarbonization
涡丝孤子高速火焰传播机制在氢氨燃烧领域的脱碳应用
  • 批准号:
    23K03687
  • 财政年份:
    2023
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exploration of Combustion Control Possibility Based on New Concept of High-Speed Flame Propagation by Vortex Filament Soliton
基于涡丝孤子高速火焰传播新概念的燃烧控制可能性探索
  • 批准号:
    17K06184
  • 财政年份:
    2017
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Pulse propagation and soliton formation in nonlinear Photonic Band Gap materials
非线性光子带隙材料中的脉冲传播和孤子形成
  • 批准号:
    26333225
  • 财政年份:
    2006
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Priority Programmes
Study on generation and propagation of sub-20 femto-second optical fiber soliton pulses
亚20飞秒光纤孤子脉冲的产生与传播研究
  • 批准号:
    13450136
  • 财政年份:
    2001
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Propagation Theory of Nonlinear Optical Waveguides and Simulation of Optical Soliton Propagation
非线性光波导传播理论与光孤子传播模拟
  • 批准号:
    09650039
  • 财政年份:
    1997
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了