Residues and Moduli Spaces of Vector Bundles

向量丛的留数和模空间

基本信息

  • 批准号:
    9870053
  • 负责人:
  • 金额:
    $ 9.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-07-01 至 2001-08-31
  • 项目状态:
    已结题

项目摘要

Szenes 9870053 The project is concerned with topological invariants of special spaces arising both in algebraic geometry and quantum physics: the moduli spaces of parabolic vector bundles over Riemann surfaces. A detailed geometric analysis of the intersection numbers of these moduli spaces will be pursued by relating them to certain problems of the theory of hyperplane arrangements. A new algebro-geometric model of topological quantum field theories will be studied and relations with deformation quantization will be explored. This is research in the field of algebraic geometry. Algebraic geometry is one of the oldest parts of modern mathematics, but one which has had a revolutionary flowering in the past quarter-century, partly due to some recently discovered surprizing connections with quantum physics. In its origin, it treated figures that could be defined in the plane by the simplest equations, namely polynomials. Nowadays the field makes use of methods not only from algebra, but from analysis and topology, and conversely is finding application in those fields as well as in physics, theoretical computer science, and robotics.
Szenes 9870053 该项目涉及代数几何和量子物理学中出现的特殊空间的拓扑不变量:黎曼曲面上抛物线向量丛的模空间。 通过将这些模空间的交数与超平面排列理论的某些问题联系起来,可以对它们进行详细的几何分析。将研究拓扑量子场论的新代数几何模型,并探讨与形变量子化的关系。 这是代数几何领域的研究。 代数几何是现代数学最古老的部分之一,但它在过去四分之一个世纪中得到了革命性的发展,部分原因是最近发现了与量子物理学的一些令人惊讶的联系。在它的起源中,它处理可以通过最简单的方程(即多项式)在平面上定义的图形。如今,该领域不仅使用代数方法,还使用分析和拓扑方法,相反,它正在这些领域以及物理学、理论计算机科学和机器人技术中得到应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andras Szenes其他文献

Andras Szenes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

面向大规模数据的深度子空间聚类方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于模数协调的集成装配式护理单元空间自适应优化研究
  • 批准号:
    51908360
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
空间约束的在线包组推荐优化与公平性研究
  • 批准号:
    61862013
  • 批准年份:
    2018
  • 资助金额:
    37.0 万元
  • 项目类别:
    地区科学基金项目
基于内存的大规模空间数据管理和机器学习系统
  • 批准号:
    61802364
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
装配式农村住宅设计体系与方法研究——以石家庄东南部平原郊区农村为例
  • 批准号:
    51708168
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
  • 批准号:
    EP/Y037162/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Research Grant
CAREER: Moduli Spaces, Fundamental Groups, and Asphericality
职业:模空间、基本群和非球面性
  • 批准号:
    2338485
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Continuing Grant
Novel Approaches to Geometry of Moduli Spaces
模空间几何的新方法
  • 批准号:
    2401387
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant
Analysis of singularities of extremal Riemann surfaces and Klein surfaces in moduli spaces
模空间中极值黎曼曲面和克莱因曲面的奇异性分析
  • 批准号:
    23K03138
  • 财政年份:
    2023
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry and dynamics in moduli spaces of surfaces
表面模空间中的几何和动力学
  • 批准号:
    2304840
  • 财政年份:
    2023
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了