Topics in Topology and Geometry
拓扑与几何专题
基本信息
- 批准号:9803254
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-15 至 2002-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9803254 Burghelea D. Burghelea plans work in topology, geometric analysis and dynamics, based on methods of linear algebra ``a la von Neumann'' and on regularized determinants of elliptic operators. He plans: 1) to attack a number of open problems on L2-invariants, torsion invariants, relation between torsion and dynamics, 2) to develop new mathematical tools, such as the Hodge theory of geometric complexes associated to Morse-Bott functions, Witten-Hellfer-Sjostrand theory with symmetry and with parameters, and 3) to test these new tools against a number of open problems in geometric analysis and spectral geometry. The research will shed more light on the nature and the power of the L2 invariants and will considerably increase the generality of some successful techniques in geometric analysis and hopefully solve some open problems in topology and spectral geometry. The above work explores the relationship between the shape of a geometric object (a Riemannian manifold), as embodied in its topology and geometry, and sound, as embodied in the spectra of various Laplace operators associated to it -- think in terms of natural frequencies of vibration. It also investigates the constraints imposed by the shape and sound on basic qualitative elements of dynamics such as closed trajectories, attractors, repulsors, and saddle points. The methods used involve unusual quantities introduced by von Neumann, like dimensions that are not integers and volumes of infinitely large objects. The research will investigate the type of additional information about the shape and sound, and about the dynamics on geometric objects, that can be obtained by using these unusual quantities. ***
9803254 Burghelea D. Burghelea计划在拓扑,几何分析和动力学方面工作,基于线性代数的方法``a la von noumann''和椭圆算子的正则决定因素。 He plans: 1) to attack a number of open problems on L2-invariants, torsion invariants, relation between torsion and dynamics, 2) to develop new mathematical tools, such as the Hodge theory of geometric complexes associated to Morse-Bott functions, Witten-Hellfer-Sjostrand theory with symmetry and with parameters, and 3) to test these new tools against a number of open problems in geometric analysis and spectral geometry.该研究将更多地了解L2不变性的性质和力量,并将大大提高一些成功技术的一般性,并希望解决拓扑和光谱几何学方面的一些开放问题。上述工作探讨了几何对象的形状(riemannian歧管)的形状,如其拓扑和几何形状所体现的,声音在与其相关的各种拉普拉斯操作员的光谱中所体现 - 用天然振动频率进行思考。它还研究了由封闭轨迹,吸引子,驱动器和马鞍点等动力学基本定性元素所施加的限制。所使用的方法涉及冯·诺伊曼(von Neumann)引入的异常数量,例如不是整数和无限大对象的体积的维度。该研究将研究有关形状和声音的其他信息,以及有关几何对象的动力学的其他信息,这些信息可以通过使用这些异常数量来获得。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dan Burghelea其他文献
Successful partial nephrectomy of a T1b multilocular clear cell renal cell carcinoma arising in a renal graft
- DOI:
10.1016/j.eucr.2018.10.003 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:
- 作者:
Florin Ioan Elec;Andreea Zaharie;Gheorghiţă Iacob;Tudor Moisoiu;Dan Burghelea;Mihai Adrian Socaciu;Radu Ion Badea;Liviu Ghervan - 通讯作者:
Liviu Ghervan
Dan Burghelea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dan Burghelea', 18)}}的其他基金
Mathematical Sciences: Free Loop Space, Automorphisms of Manifolds and Cyclic Homology
数学科学:自由循环空间、流形自同构和循环同调
- 批准号:
8917914 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Cyclic Homology, Algebra, Topology and Geometry
数学科学:循环同调、代数、拓扑和几何
- 批准号:
8701125 - 财政年份:1987
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Cyclic Homology, Geometry and Topology
数学科学:循环同调、几何和拓扑
- 批准号:
8503739 - 财政年份:1985
- 资助金额:
-- - 项目类别:
Standard Grant
Homotopy Type of the Group of Automorphisms of Compact Manifolds
紧流形自同构群的同伦型
- 批准号:
8003276 - 财政年份:1980
- 资助金额:
-- - 项目类别:
Standard Grant
Homotopy Type of the Group of Automorphisms of Compact Manifolds
紧流形自同构群的同伦型
- 批准号:
7903446 - 财政年份:1979
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
基于拓扑几何学的致密油藏跨尺度润湿机理研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于拓扑几何学的致密油藏跨尺度润湿机理研究
- 批准号:42102149
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
微分流形几何学与拓扑学的历史研究
- 批准号:11801553
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连通自相似分形的拓扑学与拟共形几何学
- 批准号:11871200
- 批准年份:2018
- 资助金额:52.0 万元
- 项目类别:面上项目
大脑神经回路间信息传递的拓扑几何学功能磁共振成像研究:以选择性视觉注意为应用载体
- 批准号:61871105
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
Comprehensive studies on topology, analysis and geometry of singular spaces and related topics
奇异空间的拓扑、分析和几何及相关主题的综合研究
- 批准号:
24540085 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in Dynamics, Differential Topology and Differential Geometry
动力学、微分拓扑和微分几何主题
- 批准号:
0555803 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
Topics at the Intersection of Geometry, Topology and Group Theory
几何、拓扑和群论交叉的主题
- 批准号:
0604633 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Topics at the Intersection of Geometry, Topology and Group Theory
职业:几何、拓扑和群论交叉的主题
- 批准号:
9984815 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Geometry and Topology
数学科学:几何和拓扑主题
- 批准号:
9403518 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant