Mathematical Sciences: Chaos-Integrability Transition in Nonlinear Dynamical Systems: Exponental Asymptotics Approach

数学科学:非线性动力系统中的混沌可积性转变:指数渐近方法

基本信息

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Tovbis其他文献

Alexander Tovbis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Tovbis', 18)}}的其他基金

Breather and Soliton Gases for the Focusing Nonlinear Schrodinger Equation: Theoretical and Applied Aspects
用于聚焦非线性薛定谔方程的呼吸气体和孤子气体:理论和应用方面
  • 批准号:
    2009647
  • 财政年份:
    2020
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Continuing Grant
Asymptotic Methods for Singularly Perturbed Nonlinear Systems
奇异摄动非线性系统的渐近方法
  • 批准号:
    0508779
  • 财政年份:
    2005
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Continuing Grant
Asymptotic Methods for Singularity Perturbed Nonlinear Systems
奇异摄动非线性系统的渐近方法
  • 批准号:
    0207201
  • 财政年份:
    2002
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Chaos-Integrability Transition in Nonlinear Dynamical Systems: Exponental Asymptotics Approach
数学科学:非线性动力系统中的混沌可积性转变:指数渐近方法
  • 批准号:
    9500644
  • 财政年份:
    1995
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Standard Grant

相似国自然基金

国际应用系统分析研究学会2023暑期青年科学家项目
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    4.5 万元
  • 项目类别:
基于可解释机器学习的科学知识角色转变预测研究
  • 批准号:
    72304108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向论文引用与科研合作的"科学学"规律中的国别特征研究
  • 批准号:
    72374173
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
战略与管理研究类:电气科学与工程学科研究方向与关键词优化
  • 批准号:
    52342702
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目
X9R高温多层陶瓷电容器(MLCC)中关键科学与技术难题研究
  • 批准号:
    52302276
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mathematical Sciences: Transition to Chaos in Multidimensional Hamiltonian Systems
数学科学:多维哈密顿系统中向混沌的转变
  • 批准号:
    9623216
  • 财政年份:
    1996
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Classical Analysis, Number Theory and Quantum Chaos
数学科学:经典分析、数论和量子混沌
  • 批准号:
    9424368
  • 财政年份:
    1995
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Chaos-Integrability Transition in Nonlinear Dynamical Systems: Exponental Asymptotics Approach
数学科学:非线性动力系统中的混沌可积性转变:指数渐近方法
  • 批准号:
    9500644
  • 财政年份:
    1995
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Modeling in Continuous Time, Delayed Autoregressive Processes, and Chaos
数学科学:连续时间非线性建模、延迟自回归过程和混沌
  • 批准号:
    9504798
  • 财政年份:
    1995
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Standard Grant
Mathematical Sciences: "Chaos with Multiple Positive Lyapunov Exponents
数学科学:“具有多个正李雅普诺夫指数的混沌
  • 批准号:
    9423843
  • 财政年份:
    1995
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了