Mathematical Sciences: Trace Extensions, Commutator Spaces and Single Commutators with Applications to the Homology, Determinants and K-Theory of Operator Ideals

数学科学:迹扩展、换向器空间和单换向器及其在算子理想的同调性、行列式和 K 理论中的应用

基本信息

  • 批准号:
    9706911
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-07-15 至 1999-06-30
  • 项目状态:
    已结题

项目摘要

Abstract Weiss The commutator structure of operator ideals (e.g., the class of single commutators, AB-BA, with A, B from two two-sided operator ideals, respectively, along with commutator ideals (their linear span)) and related trace extension problems will be investigated and exploited to determine the Hochschild and cyclic homology for two-sided ideals in B(H), the class of bounded linear operators acting on a separable, infinite-dimensional, complex Hilbert space. A close connection between certain algebraic K-groups has been found for a wide class of two-sided ideals in B(H). Recent important advances have been made in characterizing those ideals which have zero homology (i.e., those commutator ideals which are the ideals themselves and hence have no trace) and in generalizing N. J. Kalton's characterization of the commutator ideal of the Hilbert-Schmidt class, and also the commutator ideal of the trace class (with B(H)), to arbitrary ideals. A natural generalization is a characterization of those ideals whose commutator ideal (with B(H)) contains T for a given compact operator T. A question arising in this context is: Which normed ideals admit a continuous or positive trace? The answer to this question for symmetrically normed ideals with a dense finitely generated subideal is already settled. Techniques under development involve exploiting recently found obstructions preventing certain ideals from having a trace extension beyond certain smaller ideals, and are related to the associated commutator classes and commutator ideals. The study of operator algebras and operator ideals (i.e., special classes of operators each operator of which may be viewed as an infinite matrix (a square, infinite array of numbers)) involves the investigation of operations between their operators, especially addition and multiplication. Operator algebras with these operations play an indispensable roll throughout mathematics, science, business, computer science and many of their applications to other f ields. The well-known commutative law of multiplication is that AB = BA for all numbers A and B, i.e., one always obtains the same result no matter which order one multiplies numbers. Algebras whose elements have this property are called commutative algebras. But most algebras are not commutative and studying the structure of their non-zero commutators, AB-BA, becomes central in understanding the algebras and their relation to the more easily understood commutative algebras, inside which AB-BA is always zero. The famous Heisenberg Uncertainly Principle in physics provides an early example of the relevance of commutators. This proposal is to expand our knowledge of the commutator structure of a number of important operator algebras and to use the new information towards developing techniques to settle some old and new open problems in commutator theory and in operator algebras and ideals.
Abstract Weiss The commutator structure of operator ideals (e.g., the class of single commutators, AB-BA, with A, B from two two-sided operator ideals, respectively, along with commutator ideals (their linear span)) and related trace extension problems will be investigated and exploited to determine the Hochschild and cyclic homology for two-sided ideals in B(H), the class of bounded linear operators acting on a separable,无限维,复杂的希尔伯特空间。在B(h)中,已经发现了一类双面理想的某些代数K组之间的密切联系。在表征那些具有零同源性的理想(即那些是理想本身的换向者理想,因此没有痕迹的换向者理想)以及概括N.J. Kalton对Hilbert-Schmidt班级的换向者理想的表征,以及Trace comporter of Trace Class(b(H)到仲裁理想的换向者理想的情况,这是最新的重要进步(即那些是理想本身,因此没有痕迹的换向理想)。自然的概括是对那些换向者理想(b(h))的理想的特征,其中包含给定紧凑型操作员T的t。 对于对称规范的理想,具有密集生成的次视野的对称规范理想的答案已经解决。正在开发的技术涉及利用最近发现的障碍,以防止某些理想的痕量扩展超出某些较小的理想,并且与相关的换向器类别和交换器理想有关。 对运营商代数和操作员理想的研究(即,特殊类别的操作员的每个操作员可以将其视为无限矩阵(平方,无限数字阵列))涉及对其操作员之间的操作研究,尤其是加法和乘法。这些操作的操作员代数在整个数学,科学,商业,计算机科学及其在其他F IELD上的应用中都有必不可少的滚动。众所周知的乘法定律是,对于所有数字A和B的AB = BA,即,无论哪种订单乘以数字,一个人总是会获得相同的结果。具有该特性的元素的代数称为交换代数。但是,大多数代数并不是交换性的,并且研​​究其非零换向因子AB-BA的结构在理解代数及其与更容易理解的交换代数的关系方面成为核心,而AB-BA始终为零。著名的海森伯格物理学中不确定的原则提供了换向者相关性的早期例子。该建议是扩大我们对许多重要操作员代数的换向器结构的了解,并利用新信息来开发技术,以解决通勤理论以及操作员代数和理想中的一些新旧问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Gary Weiss其他文献

Intelligent Telecommunication Technologies
智能电信技术
  • DOI:
  • 发表时间:
    1998
    1998
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gary Weiss;John Eddy;Sholom Weiss
    Gary Weiss;John Eddy;Sholom Weiss
  • 通讯作者:
    Sholom Weiss
    Sholom Weiss
On the similarity of <em>AB</em> and <em>BA</em> for normal and other matrices
  • DOI:
    10.1016/j.laa.2016.06.044
    10.1016/j.laa.2016.06.044
  • 发表时间:
    2016-11-01
    2016-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Stephan Ramon Garcia;David Sherman;Gary Weiss
    Stephan Ramon Garcia;David Sherman;Gary Weiss
  • 通讯作者:
    Gary Weiss
    Gary Weiss
A Quantitative Machine Learning Approach to Evaluating Letters of Recommendation
评估推荐信的定量机器学习方法
  • DOI:
  • 发表时间:
    2024
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yijun Zhao;Tianyu Wang;Douglas Mensah;Ellise Parnoff;Siyi He;Gary Weiss
    Yijun Zhao;Tianyu Wang;Douglas Mensah;Ellise Parnoff;Siyi He;Gary Weiss
  • 通讯作者:
    Gary Weiss
    Gary Weiss
共 3 条
  • 1
前往

Gary Weiss的其他基金

SHB: Small: Cell Phone-Based Activity Tracking for Telehealth
SHB:小型:基于手机的远程医疗活动跟踪
  • 批准号:
    1116124
    1116124
  • 财政年份:
    2011
  • 资助金额:
    --
    --
  • 项目类别:
    Standard Grant
    Standard Grant
Mathematical Sciences: Trace Extensions and Commutator Spaces with Applications to the Homology, Determinants and K-Theory of Operator Ideals
数学科学:迹扩展和交换子空间及其在算子理想的同调、行列式和 K 理论中的应用
  • 批准号:
    9503062
    9503062
  • 财政年份:
    1995
  • 资助金额:
    --
    --
  • 项目类别:
    Standard Grant
    Standard Grant
Mathematical Sciences: Quasitriangularity in von Neumann Algebras and Other Topics
数学科学:冯·诺依曼代数和其他主题中的拟三角性
  • 批准号:
    9123249
    9123249
  • 财政年份:
    1992
  • 资助金额:
    --
    --
  • 项目类别:
    Standard Grant
    Standard Grant
Mathematical Sciences: Problems in Operator Theory on Pavings, Compact Derivations in Operator Algebras and Commutators
数学科学:铺路算子理论中的问题、算子代数和换向器中的紧致导数
  • 批准号:
    8503390
    8503390
  • 财政年份:
    1985
  • 资助金额:
    --
    --
  • 项目类别:
    Standard Grant
    Standard Grant
Normal Operators, Fuglede's Theorem, and Hilbert-Schmidt Operators
正规运算符、Fuglede 定理和 Hilbert-Schmidt 运算符
  • 批准号:
    7702147
    7702147
  • 财政年份:
    1977
  • 资助金额:
    --
    --
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
  • 批准号:
    82303925
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
游戏化mHealth干预模式下精神障碍出院患者自杀风险管理策略的实施科学研究——基于多阶段优化策略
  • 批准号:
    72374095
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
基于成分转化-体内时空分布-空间代谢组学整体耦联阐释女贞子蒸制的科学内涵
  • 批准号:
    82374041
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
虚拟实验环境下科学探究过程自动监测与适应性反馈研究
  • 批准号:
    62377005
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于胆汁酸/CCL2/CCR2+TAMs代谢免疫穿越调控探讨乳腺癌“肝——乳”轴科学内涵与干预研究
  • 批准号:
    82374446
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

High-sensitivity and high-resolution spectral measurement of trace moisture using wavelength-meter controlled CRDS system
使用波长计控制的 CRDS 系统对痕量水分进行高灵敏度和高分辨率光谱测量
  • 批准号:
    17K14507
    17K14507
  • 财政年份:
    2017
  • 资助金额:
    --
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
    Grant-in-Aid for Young Scientists (B)
Nutrional Epidemiology of Cancer
癌症的营养流行病学
  • 批准号:
    7283671
    7283671
  • 财政年份:
    2003
  • 资助金额:
    --
    --
  • 项目类别:
Mathematical Sciences: Sheaves on Witt Schemes and Trace Formula with Application to Representation Theory
数学科学:维特方案和迹公式及其在表示论中的应用
  • 批准号:
    9700458
    9700458
  • 财政年份:
    1997
  • 资助金额:
    --
    --
  • 项目类别:
    Standard Grant
    Standard Grant
RUI: Mathematical Sciences: Spherical Characters on P-adic Coset Spaces and the Relative Trace Formula
RUI:数学科学:P-进陪集空间上的球面特征和相对迹公式
  • 批准号:
    9623125
    9623125
  • 财政年份:
    1996
  • 资助金额:
    --
    --
  • 项目类别:
    Standard Grant
    Standard Grant
Mathematical Sciences: Trace Extensions and Commutator Spaces with Applications to the Homology, Determinants and K-Theory of Operator Ideals
数学科学:迹扩展和交换子空间及其在算子理想的同调、行列式和 K 理论中的应用
  • 批准号:
    9503062
    9503062
  • 财政年份:
    1995
  • 资助金额:
    --
    --
  • 项目类别:
    Standard Grant
    Standard Grant