Mathematical Sciences: Hyperbolic Geometry and Rigidity in Three Dimensions
数学科学:双曲几何和三维刚性
基本信息
- 批准号:9626233
- 负责人:
- 金额:$ 6.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-08-01 至 1999-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9626233 Minsky Minsky will investigate a collection of problems centered on the basic classification conjectures in the field of hyperbolic 3-manifolds and Kleinian groups, and their connections to holomorphic dynamics. A prominent open question in this field is Thurston's Ending Lamination Conjecture, which states that a hyperbolic 3-manifold is uniquely determined by its topological type and a list of invariants that describe the asymptotic geometry of its ends. Consequences of this conjecture include a rigidity theorem for Kleinian group actions on the sphere, directly analogous to outstanding rigidity conjectures in holomorphic dynamics, and a topological description of parameter spaces of isomorphic Kleinian groups. Minsky previously established these conjectures in special cases, and the techniques developed show promise for extension to the general case. A number of projects have grown out of this program, whose successful completion should contribute to the solution of the conjecture, as well as being of independent interest. These projects investigate topological characterizations of Kleinian group actions on the sphere, some phenomena associated with geometric limits of Kleinian groups (with R. Canary and J. Brock), and the large scale geometry and combinatorics of the Teichmueller space of a surface (with H. Masur). Minsky is also considering (with M. Lyubich) a new construction that associates to a rational map a 3-dimensional hyperbolic object analogous to the quotient 3-orbifold of a Kleinian group. This object renders more explicit the powerful analogies between Kleinian groups and other holomorphic dynamical systems. In the study of low-dimensional geometry, topology and dynamics, one witnesses the depth of interconnection between fields of mathematics. Henri Poincare, who studied both celestial dynamics and complex analysis (among many other things), observed in the 19th century that the conformal transformations of the Riema nn sphere -- some of the building blocks of complex analysis -- extend to act on the three-dimensional ball bounded by the sphere, and their action preserves a complete, homogeneous metric, the metric of Hyperbolic or Non-Euclidean Space. This opened the door to a beautiful theory relating topology, geometry, and complex dynamics, which was only seriously explored in the latter part of this century. The rigidity problem mentioned above is essentially the question of to what extent the topological, or combinatorial, properties of a system determine its geometric properties. This and other basic questions in the field can be phrased in geometric, topological or dynamical terms, and are still linked to some of the motivating questions about physical systems of which Poincare was aware a hundred years ago. Issues such as classification of systems, mapping out regions of stability and instability, deformation and bifurcation of families of systems, and probabilistic properties such as ergodicity, all have significance in both pure and applied mathematics. Topology and geometry have already provided deep insights into such issues, and one hopes that further study of these interactions will continue to bear fruit. ***
9626233 Minsky Minsky将研究以双曲线3个manifolds和Kleinian群体领域的基本分类猜想的集合,及其与Holomorphic Dynamics的联系。 在该领域的一个突出的开放问题是瑟斯顿的终结层压猜想,该猜想指出,双曲线3个manifold由其拓扑类型和描述其末端渐近几何形状的不变性列表唯一决定。 该猜想的后果包括针对球体上克莱恩组作用的刚性定理,直接类似于霍明态动力学中出色的刚性猜想,以及同构克莱尼群体的参数空间的拓扑描述。 明斯基先前在特殊情况下建立了这些猜想,这些技术发展了向一般案例扩展的希望。 该计划的许多项目已经发展出来,其成功完成应有助于猜想的解决方案,并具有独立的兴趣。 这些项目调查了克莱琳小组在球体上的作用的拓扑特征,某些现象与克莱琳群体的几何极限相关(带有R. Canary和J. Brock),以及表面的Teichmueller空间的大规模几何形状和组合物(与H. Masur)。 Minsky还在考虑(与M. Lyubich)一起使用新结构,该结构将其与合理地图相关联的3维双曲对象类似于Kleinian组的商3-孔。 该对象更加明确地说明了克莱恩组与其他全态动力学系统之间的强大类比。 在对低维几何形状,拓扑和动力学的研究中,有人见证了数学领域之间互连的深度。 研究了天体动力学和复杂分析(除其他方面),在19世纪观察到,riema nn领域的保形转换(复杂分析的某些基础)扩展到面向球体的三维球,及其动作保持了一个完整的,同质性的空间,而不是一个同质的空间。 这为与拓扑,几何学和复杂动力学有关的美丽理论打开了大门,该理论只在本世纪后期才进行了认真的探索。 上面提到的僵化问题本质上是系统的拓扑或组合特性在多大程度上决定其几何特性。 该领域中的这个和其他基本问题可以用几何,拓扑或动态术语来表达,并且仍然与一百年前Poincare意识到的物理系统的一些激励性问题有关。 诸如系统分类,绘制稳定性和不稳定性区域,系统家族家族的变形和分叉等问题,以及诸如Ergodicity之类的概率特性,都在纯数学和应用数学中都具有重要意义。 拓扑和几何形状已经为这些问题提供了深刻的见解,人们希望对这些相互作用的进一步研究将继续结出果实。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yair Minsky其他文献
Yair Minsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yair Minsky', 18)}}的其他基金
Deformation, topology and geometry in low dimensions
低维变形、拓扑和几何
- 批准号:
2005328 - 财政年份:2020
- 资助金额:
$ 6.81万 - 项目类别:
Continuing Grant
Properly Discontinuous Actions on Homogeneous Spaces
均匀空间上的适当不连续动作
- 批准号:
1709952 - 财政年份:2017
- 资助金额:
$ 6.81万 - 项目类别:
Continuing Grant
Structure and Deformation in Low-Dimensional Topology
低维拓扑中的结构和变形
- 批准号:
1610827 - 财政年份:2016
- 资助金额:
$ 6.81万 - 项目类别:
Standard Grant
Geometry on Groups and Spaces, August 7-12, 2014
群与空间的几何,2014 年 8 月 7-12 日
- 批准号:
1431070 - 财政年份:2014
- 资助金额:
$ 6.81万 - 项目类别:
Standard Grant
The Sixth Ahlfors-Bers Colloquium
第六届 Ahlfors-Bers 研讨会
- 批准号:
1444972 - 财政年份:2014
- 资助金额:
$ 6.81万 - 项目类别:
Standard Grant
COMPLEXITY AND RIGIDITY IN LOW DIMENSIONAL GEOMETRY
低维几何的复杂性和刚性
- 批准号:
1311844 - 财政年份:2013
- 资助金额:
$ 6.81万 - 项目类别:
Continuing Grant
Challenges in Geometry, Analysis and Computation: High Dimensional Synthesis
几何、分析和计算方面的挑战:高维综合
- 批准号:
1207829 - 财政年份:2012
- 资助金额:
$ 6.81万 - 项目类别:
Standard Grant
FRG:Collaborative Research: Deformation spaces of geometric structures
FRG:合作研究:几何结构的变形空间
- 批准号:
1065872 - 财政年份:2011
- 资助金额:
$ 6.81万 - 项目类别:
Standard Grant
Hyperbolic geometry, topology and dynamics
双曲几何、拓扑和动力学
- 批准号:
1005973 - 财政年份:2010
- 资助金额:
$ 6.81万 - 项目类别:
Continuing Grant
Focused Research Group: Collaborative Research: Geometry and Deformation Theory of Hyperbolic 3-Manifolds
重点研究组:合作研究:双曲3流形的几何与变形理论
- 批准号:
0554321 - 财政年份:2006
- 资助金额:
$ 6.81万 - 项目类别:
Standard Grant
相似国自然基金
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
游戏化mHealth干预模式下精神障碍出院患者自杀风险管理策略的实施科学研究——基于多阶段优化策略
- 批准号:72374095
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于成分转化-体内时空分布-空间代谢组学整体耦联阐释女贞子蒸制的科学内涵
- 批准号:82374041
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
虚拟实验环境下科学探究过程自动监测与适应性反馈研究
- 批准号:62377005
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于胆汁酸/CCL2/CCR2+TAMs代谢免疫穿越调控探讨乳腺癌“肝——乳”轴科学内涵与干预研究
- 批准号:82374446
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Mathematical Sciences: Dynamics, Hyperbolic Geometry and Quasiconformal Maps
数学科学:动力学、双曲几何和拟共形映射
- 批准号:
9996234 - 财政年份:1998
- 资助金额:
$ 6.81万 - 项目类别:
Continuing Grant
Mathematical Sciences: Spectral Operators Generated by Damped Hyperbolic Equations
数学科学:由阻尼双曲方程生成的谱算子
- 批准号:
9706882 - 财政年份:1997
- 资助金额:
$ 6.81万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research Experience in Computational Group Theory and Hyperbolic Geometry
数学科学:计算群论和双曲几何的研究经历
- 批准号:
9619714 - 财政年份:1997
- 资助金额:
$ 6.81万 - 项目类别:
Standard Grant
Mathematical Sciences: Hyperbolic Geometry and Nevanlinna Theory
数学科学:双曲几何和奈万林纳理论
- 批准号:
9626598 - 财政年份:1996
- 资助金额:
$ 6.81万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research on Hyperbolic Equations
数学科学:双曲方程研究
- 批准号:
9623175 - 财政年份:1996
- 资助金额:
$ 6.81万 - 项目类别:
Standard Grant