Mathematical Sciences: Logic and Computability
数学科学:逻辑与可计算性
基本信息
- 批准号:9503503
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-07-01 至 1998-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9503503 Shore Shore will investigate a broad range of topics in computability theory (recursion theory) and logic. Included in the first area are investigations of the structures of sets and functions ordered by different notions of relative complexity of computation. Particular emphasis will be placed on the complexity structures of those sets which are effectively enumerable, and on the most general notion of relative computability as defined by unrestricted Turing machine computations. Computation procedures that place effective bounds on the access to oracle information or on the run-time of the computations will also be investigated. The second area includes the study of structures representable by finite automata, decision procedures, the analysis and development of nonmonotonic logic, concurrent programming models, and applications of linear programming ideas and algorithms to data structures and logic programming. A study of the logical and mathematical foundations of hybrid (continuous and discrete) control theory will be conducted, as well as of the practical implementation of algorithms. This research project on computability is primarily concerned with analyzing various ways of measuring the complexity of functions on the natural numbers (0,1,2,...) and other common mathematical structures, in terms of how hard they are to compute. A primary goal is the study of the relations between various notions of complexity of a function, notions which are based on machine models of computation and other notions, such as how hard it is to define or describe the function. Techniques developed here will also be applied to the study of the difficulty of proving the existence of various mathematical objects, as well as to the relationship between abstract proofs of existence of an object and the possibility or difficulty of actually computing it. Shore's project also includes applications to logics such as (i) those designed to model the real life development of knowledge, taking into account the possibility that what we think we know today will seem false tomorrow, and (ii) ones designed to interact with real measuring devices to implement procedures to control systems that must both react to outside stimuli and follow logical decision procedures. ***
9503503 Shore Shore 将研究可计算性理论(递归理论)和逻辑方面的广泛主题。 第一个领域包括对按计算相对复杂性的不同概念排序的集合和函数的结构的研究。 将特别强调那些可有效枚举的集合的复杂性结构,以及由无限制的图灵机计算定义的相对可计算性的最一般概念。 还将研究对预言机信息的访问或计算的运行时间设置有效界限的计算程序。 第二个领域包括有限自动机表示的结构的研究、决策过程、非单调逻辑的分析和开发、并发编程模型以及线性编程思想和算法在数据结构和逻辑编程中的应用。 将研究混合(连续和离散)控制理论的逻辑和数学基础以及算法的实际实现。 这个关于可计算性的研究项目主要涉及分析测量自然数(0,1,2,...)和其他常见数学结构上的函数复杂性的各种方法,以及它们的计算难度。 主要目标是研究函数复杂性的各种概念、基于计算机器模型的概念和其他概念(例如定义或描述函数的难度)之间的关系。 这里开发的技术还将应用于研究证明各种数学对象存在的难度,以及对象存在的抽象证明与实际计算它的可能性或难度之间的关系。 肖尔的项目还包括逻辑应用,例如(i)那些旨在模拟现实生活中知识发展的逻辑,考虑到我们今天认为我们所知道的明天可能会显得错误的可能性,以及(ii)旨在与真实世界互动的逻辑。测量设备来实施程序来控制系统,这些系统必须对外部刺激做出反应并遵循逻辑决策程序。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Shore其他文献
Richard Shore的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Shore', 18)}}的其他基金
[Environment] WILDCOMS-Wildlife Disease & Contaminant Monitoring & Surveillance Network
[环境] WILDCOMS-野生动物疾病
- 批准号:
NE/I021063/1 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grant
Complexity in the Constructive and Intuitionistic Theory of Reals
实数建构性直觉理论的复杂性
- 批准号:
9704337 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Support for Latin American Symposium on Mathematical Logic; Bahia Blanca, Argentina; July 1992
支持拉丁美洲数理逻辑研讨会;
- 批准号:
9123305 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Meeting: Logical Methods in Mathematics and Computer Science
数学科学:会议:数学和计算机科学中的逻辑方法
- 批准号:
9203905 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
基于机器阅读理解的科学命题文本论证逻辑识别
- 批准号:72174157
- 批准年份:2021
- 资助金额:48 万元
- 项目类别:面上项目
科学家创业过程中的角色冲突应对策略及其对创业绩效的影响研究:基于效果逻辑视角
- 批准号:72002209
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
信息科学领域知识体系内在逻辑和结构研究
- 批准号:
- 批准年份:2019
- 资助金额:30 万元
- 项目类别:专项基金项目
一种关于高效命题推理极限的新方法:基础,算法和近似
- 批准号:61373002
- 批准年份:2013
- 资助金额:66.0 万元
- 项目类别:面上项目
无穷字母表上的形式模型:逻辑与自动机
- 批准号:61100062
- 批准年份:2011
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Interdisciplinary studies on philosophy of logic: Toward the development of philosophy of proof and demonstration
逻辑哲学的跨学科研究:走向证明和论证哲学的发展
- 批准号:
21H00467 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Precision therapeutics of inflammatory bowel disease guided by Boolean logic
布尔逻辑指导的炎症性肠病精准治疗
- 批准号:
10709716 - 财政年份:2020
- 资助金额:
-- - 项目类别:
A modal logical construction of quantum logic that adds the missing concepts
量子逻辑的模态逻辑构造添加了缺失的概念
- 批准号:
20K19740 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Precision therapeutics of inflammatory bowel disease guided by Boolean logic
布尔逻辑指导的炎症性肠病精准治疗
- 批准号:
10461836 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Model Theory and proof theory of probabilistic logic in propositional and modal team semantics
命题和模态团队语义中概率逻辑的模型理论和证明理论
- 批准号:
19F19797 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows