Mathematical Sciences: Global Dynamics and Geometry in High Dimensional Nonlinear Dynamical Systems

数学科学:高维非线性动力系统中的全局动力学和几何

基本信息

  • 批准号:
    9403691
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1994
  • 资助国家:
    美国
  • 起止时间:
    1994-07-15 至 1997-06-30
  • 项目状态:
    已结题

项目摘要

9403691 Wiggens This research is concerned with the global, geometric analysis of high dimensional nonlinear dynamical systems. The physical motivation for much of the analysis arises from problems in theoretical chemistry. Over the past five years experimental techniques have been developed in chemistry to the point where real time dynamical data related to molecular interactions and dynamics can be obtained, which has resulted in the area of research known as ``femtochemistry''. As a result, we are at a point where dynamical systems research can play a role in the interpretation of this new experimental data. Many of the questions of interest are global and geometrical in nature. For example, answers to questions related to intramolecular and intermolecular energy transfer depend on the geometry and dynamics associated with surfaces of various dimensions and shapes in phase space. There is a need for applied mathematical research in this area since most of the work of theoretical chemists in this area has been carried out with low dimensional models. Since most realistic models of molecules are higher dimensional, it is important to develop mathematical techniques that apply to high dimensional systems as well as understand higher dimensional dynamical phenomena in general. One result of this research will be the development of mathematical methods for understanding intramolecular and intermolecular energy transfer in more realistic molecular systems. This research is concerned with the global, geometric analysis of high dimensional nonlinear dynamical systems. The physical motivation for much of the analysis arises from problems in theoretical chemistry. Over the past 5 years experimental techniques have been developed in chemistry to the point where real time dynamical data related to molecular interactions and dynamics can be obtained, which has resulted in the area of research known as ``femtochemistry''. As a result, we are at a point w here dynamical systems research can play a role in the interpretation of this new experimental data. Many of the questions of interest are global and geometrical in nature. For example, answers to questions related to intramolecular and intermolecular energy transfer depend on the geometry and dynamics associated with invariant manifolds that arise near resonances in phase space, and these invariant manifolds form the ``network'' in phase space which governs energy transfer issues. Near such regions the invariant manifold geometry is much more complicated than the standard ``invariant tori'' picture and new methods need to be developed. Also, one often encounters singular perturbation phenomena near such resonance regions which forces one to treat ``elliptic'' and ``hyperbolic'' phenomena simultaneously. One promising method for such problems is the so-called ``energy-phase'' method developed by Haller and Wiggins, largely in the context of two-degree-of-freedom systems, which enables one to join together the ``elliptic'' and ``hyperbolic'' phenomena that arises near resonances. We will extend this method to multi-degree-of-freedom systems. At the same time we will be interested in understanding mechanisms that give rise to complicated ``chaotic'' behavior that are ``intrinsically high dimensional'', i.e. behavior that is not just a ``scaled up'' version of typical low dimensional behavior. One result of this research will be the development of mathematical methods for understanding intramolecular and intermolecular energy transfer in more realistic molecular systems.
9403691 Wiggens 这项研究涉及高维非线性动力系统的全局几何分析。 许多分析的物理动机源于理论化学问题。 在过去的五年里,化学实验技术已经发展到可以获得与分子相互作用和动力学相关的实时动态数据的程度,这导致了被称为“飞化学”的研究领域。 因此,我们正处于动力系统研究可以在解释这一新实验数据方面发挥作用的时刻。 许多令人感兴趣的问题本质上都是全局性的和几何性的。 例如,与分子内和分子间能量转移相关的问题的答案取决于与相空间中各种尺寸和形状的表面相关的几何形状和动力学。 由于理论化学家在该领域的大部分工作都是使用低维模型进行的,因此需要在该领域进行应用数学研究。 由于大多数现实的分子模型都是高维的,因此开发适用于高维系统的数学技术以及理解一般的高维动力学现象非常重要。这项研究的成果之一将是开发数学方法来理解更现实的分子系统中分子内和分子间的能量转移。 这项研究涉及高维非线性动力系统的全局几何分析。 许多分析的物理动机源于理论化学问题。 在过去的五年里,化学实验技术已经发展到可以获得与分子相互作用和动力学相关的实时动态数据的程度,这导致了被称为“飞化学”的研究领域。 因此,我们正处于动力系统研究可以在解释这一新实验数据方面发挥作用的时刻。 许多令人感兴趣的问题本质上都是全局性的和几何性的。 例如,与分子内和分子间能量转移相关的问题的答案取决于与相空间中共振附近出现的不变流形相关的几何形状和动力学,并且这些不变流形在相空间中形成控制能量转移问题的“网络” 。 在这些区域附近,不变流形几何比标准的“不变环面”图复杂得多,需要开发新方法。此外,人们经常在这些共振区域附近遇到奇异的扰动现象,这迫使人们同时处理“椭圆”和“双曲”现象。 解决此类问题的一种有前途的方法是由 Haller 和 Wiggins 开发的所谓“能量相”方法,主要是在二自由度系统的背景下,该方法使人们能够将“椭圆”连接在一起”和在共振附近出现的“双曲”现象。我们将把这种方法扩展到多自由度系统。 同时,我们将有兴趣理解产生“本质上高维”的复杂“混乱”行为的机制,即行为不仅仅是典型低维的“放大”版本行为。 这项研究的成果之一将是开发数学方法来理解更现实的分子系统中分子内和分子间的能量转移。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Wiggins其他文献

Reaction Path Bifurcation in an Electrocyclic Reaction: Ring-Opening of the Cyclopropyl Radical.
电环反应中的反应路径分叉:环丙基自由基的开环。
  • DOI:
    10.1021/acs.jpca.5b02834
  • 发表时间:
    2015-06-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zeb C. Kramer;B. K. Carpenter;G. S. Ezra;Stephen Wiggins
  • 通讯作者:
    Stephen Wiggins
Optimizing mixing in lid-driven flow designs through predictions from Eulerian indicators
通过欧拉指标的预测来优化盖驱动流动设计中的混合
  • DOI:
    10.1063/1.3626022
  • 发表时间:
    2011-08-19
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    K. McIlhany;D. Mott;E. Oran;Stephen Wiggins
  • 通讯作者:
    Stephen Wiggins
Phase Space Structure and Transport in a Caldera Potential Energy Surface
破火山口势能面的相空间结构和输运
  • DOI:
    10.1142/s0218127418300422
  • 发表时间:
    2018-09-18
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Katsanikas;Stephen Wiggins
  • 通讯作者:
    Stephen Wiggins
A lambda-lemma for normally hyperbolic invariant manifolds
一般双曲不变流形的 lambda 引理
  • DOI:
    10.1016/j.jde.2004.03.013
  • 发表时间:
    2005-10-28
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Cresson;Stephen Wiggins
  • 通讯作者:
    Stephen Wiggins
ENSO dynamics in current climate models: an investigation using nonlinear dimensionality reduction
当前气候模型中的 ENSO 动力学:使用非线性降维的研究
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Ross;P. Valdes;Stephen Wiggins
  • 通讯作者:
    Stephen Wiggins

Stephen Wiggins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Wiggins', 18)}}的其他基金

'The Nonlinear Dynamical Foundations of Transition State Theory in Systems with Three or More Degrees-of-Freedom'
“三自由度或更多自由度系统中过渡态理论的非线性动力学基础”
  • 批准号:
    0071338
  • 财政年份:
    2000
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
US-France Cooperative Research: Geometrical Analysis of the Vibrational Dynamics of Highly Excited Molecules with Three Degrees-of-Freedom
美法合作研究:三自由度高激发分子振动动力学的几何分析
  • 批准号:
    9910196
  • 财政年份:
    1999
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
U.S.-Spain Cooperative Research: Computational and Analytical Dynamical Systems Techniques for the Study of Global Dynamics in Theoretical Chemistry
美国-西班牙合作研究:理论化学中全球动力学研究的计算和​​分析动力系统技术
  • 批准号:
    9910336
  • 财政年份:
    1999
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Theoretical Chemistry, Dynamical Systems, and the Geometry of Global Phase Space Dynamics
理论化学、动力系统和全局相空间动力学几何
  • 批准号:
    9704759
  • 财政年份:
    1997
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Presidential Young Investigators Award
总统青年研究员奖
  • 批准号:
    8958344
  • 财政年份:
    1989
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant

相似国自然基金

设立面向全球的科学研究基金实施路径研究
  • 批准号:
    L2124033
  • 批准年份:
    2021
  • 资助金额:
    20 万元
  • 项目类别:
如何做好面向全球的科学研究资助工作
  • 批准号:
    L2142001
  • 批准年份:
    2021
  • 资助金额:
    80 万元
  • 项目类别:
    专项基金项目
“NOy全球循环”科学假设的提出和在青藏高原的观测验证
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
全球治理背景下的海洋与极地科学发展战略研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
    专项基金项目
提高全球陆表与海面净辐射遥感估算精度的关键科学问题研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目

相似海外基金

Effects of in situ orientation on quantitative MR-based measures of cartilage endplate health
原位定向对基于 MR 的软骨终板健康定量测量的影响
  • 批准号:
    10607735
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
JHU TRAC: Training and Supporting the Next Generation of TB Researchers
JHU TRAC:培训和支持下一代结核病研究人员
  • 批准号:
    10593142
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
JHU TRAC: Training and Supporting the Next Generation of TB Researchers
JHU TRAC:培训和支持下一代结核病研究人员
  • 批准号:
    10431020
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
JHU TRAC: Training and Supporting the Next Generation of TB Researchers
JHU TRAC:培训和支持下一代结核病研究人员
  • 批准号:
    10593142
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
MATRIX: enhancing access to global research in the mathematical sciences
MATRIX:增强数学科学研究的全球性
  • 批准号:
    LE220100107
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了