Mathematical Sciences: Quasiconformal Analysis and Harmonic Integrals with Applications to Nonlinear Elasticity
数学科学:拟共形分析和调和积分及其在非线性弹性中的应用
基本信息
- 批准号:9401104
- 负责人:
- 金额:$ 13.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-05-01 至 1997-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9401104 Iwaniec The general area of mathematical research represented by this project is that of nonlinear partial differential equations. The main themes grew out of problems in quasiconformal and quasiregular mappings. The work expanded in recent years to include methods from harmonic analysis, calculus of variations, Sobolev spaces, differential geometry and topology. A major impetus to the current state of quasiconformal mapping was given by work of Sullivan and Donaldson on quasiconformal mappings of four-manifolds. In the course of this research, new differential equations were discovered which in many ways generalize the familiar Cauchy-Riemann system or the Beltrami equation. Basic questions to be studied include that of finding conditions thatensure weakly quasiregularity implies strong quasiregularity. Work will also be done investigating singularities of these mappings and the connection between dimension and removable sets of singularities. Additional efforts will be made to analyze A- harmonic mappings and singular integrals which carry certain algebraic structures, such as Grassmannn or Clifford algebras with a goal of determining dimension-free norms on the integrals when treated as transformations of function spaces. Partial differential equations form a basis for mathematical modeling of the physical world. The role of mathematical analysis is not so much to create the equations as it is to provide qualitative and quantitative information about the solutions. This may include answers to questions about uniqueness, smoothness and growth. In addition, analysis often develops methods for approximation of solutions and estimates onthe accuracy of these approximations. ***
9401104 iWaniec该项目代表的数学研究的一般领域是非线性偏微分方程。 主要主题是出于准文献和准磁映射的问题而出现的。 近年来,这项工作扩展到包括谐波分析,变化的计算,Sobolev空间,差异几何形状和拓扑的方法。 沙利文(Sullivan)和唐纳森(Donaldson)在四元式映射的四个manifolds的准文字映射方面给出了对当前准文化映射状态的主要动力。 在这项研究的过程中,发现了新的微分方程,从许多方面概括了熟悉的Cauchy-Riemann系统或Beltrami方程。 要研究的基本问题包括发现弱的准牙条性的条件意味着很强的准杂志。 还将完成这些映射的奇异性以及维度和可移动奇点集之间的联系。 将采取额外的努力来分析A-谐波映射和奇异积分,这些积分具有某些代数结构,例如Grassmannn或Clifford代数,其目的是确定作为功能空间变换时积分上的无维规范。 部分微分方程构成了物理世界数学建模的基础。 数学分析的作用并不是创建方程,而是提供有关解决方案的定性和定量信息。 这可能包括有关独特性,光滑和成长的问题的答案。 此外,分析通常会开发用于近似解决方案和对这些近似值准确性的估计的方法。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tadeusz Iwaniec其他文献
Div-curl fields of finite distortion
- DOI:
10.1016/s0764-4442(98)80160-2 - 发表时间:
1998-10-01 - 期刊:
- 影响因子:
- 作者:
Tadeusz Iwaniec;Carlo Sbordone - 通讯作者:
Carlo Sbordone
Tadeusz Iwaniec的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tadeusz Iwaniec', 18)}}的其他基金
Variational approach to Geometric Function Theorem, Nonlinear PDEs and Hyperelasticy
几何函数定理、非线性偏微分方程和超弹性的变分法
- 批准号:
1802107 - 财政年份:2018
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Conference: Harmonic Analysis, Complex Analysis, Spectral Theory and All That
会议:调和分析、复分析、谱理论等等
- 批准号:
1600705 - 财政年份:2016
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Sobolev Mappings and Energy-Integrals in Mathematical Models of Nonlinear Elasticity
非线性弹性数学模型中的索博列夫映射和能量积分
- 批准号:
1301558 - 财政年份:2013
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Extremal Problems in Quasiconformal Geometry and Nonlinear PDEs, an Invitation to n- Harmonic Hyperelasticity
拟共形几何和非线性偏微分方程中的极值问题,n 调和超弹性的邀请
- 批准号:
0800416 - 财政年份:2008
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Geometric Analysis of Deformations of Finite Distortiion via Nonlinear PDEs and Null Lagrangians
通过非线性偏微分方程和零拉格朗日量对有限畸变变形进行几何分析
- 批准号:
0301582 - 财政年份:2003
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Collaborative Research: FRG: Geometric Function Theory: From Complex Functions to Quasiconformal Geometry and Nonlinear Analysis
合作研究:FRG:几何函数理论:从复杂函数到拟共形几何和非线性分析
- 批准号:
0244297 - 财政年份:2003
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Foundation of the Geometric Function Theory in R^n: The Governing differential Forms, Variational Integrals and Nonlinear Elasticity
R^n 中的几何函数理论基础:控制微分形式、变分积分和非线性弹性
- 批准号:
0070807 - 财政年份:2000
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Quasiconformal Mappings, Harmonic Analysis and Nonlinear Elasticity from the Prospective of PDEs
偏微分方程视角下的拟共形映射、调和分析和非线性弹性
- 批准号:
9706611 - 财政年份:1997
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Regularity Problems in Nonlinear Potential Theory and Quasiregular Mappings
数学科学:非线性势论和拟正则映射中的正则问题
- 批准号:
9208296 - 财政年份:1992
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Regularity Problems for Variational Integrals and Quasiregular Mappings
数学科学:变分积分和拟正则映射的正则问题
- 批准号:
9007946 - 财政年份:1990
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
相似国自然基金
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
游戏化mHealth干预模式下精神障碍出院患者自杀风险管理策略的实施科学研究——基于多阶段优化策略
- 批准号:72374095
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于成分转化-体内时空分布-空间代谢组学整体耦联阐释女贞子蒸制的科学内涵
- 批准号:82374041
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
虚拟实验环境下科学探究过程自动监测与适应性反馈研究
- 批准号:62377005
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于胆汁酸/CCL2/CCR2+TAMs代谢免疫穿越调控探讨乳腺癌“肝——乳”轴科学内涵与干预研究
- 批准号:82374446
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Mathematical Sciences: Dynamics, Hyperbolic Geometry and Quasiconformal Maps
数学科学:动力学、双曲几何和拟共形映射
- 批准号:
9996234 - 财政年份:1998
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Quasiconformal Maps and Nonsmooth Analysis
数学科学:拟共形映射和非光滑分析
- 批准号:
9622844 - 财政年份:1996
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Discrete Groups and Quasiconformal Mappings
数学科学:离散群和拟共形映射
- 批准号:
9622808 - 财政年份:1996
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Mathematical Sciences Research Conference: Quasiconformal Mappings and Analysis; August 18-19, 1995; Ann Arbor, Michigan
数学科学研究会议:拟共形映射与分析;
- 批准号:
9424350 - 财政年份:1995
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Quasiconformal Analysis: Extensions and Applications
数学科学:拟共形分析:扩展和应用
- 批准号:
9501561 - 财政年份:1995
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant