Mathematical Sciences: Geometric Approach to Weinstein Conjecture

数学科学:韦恩斯坦猜想的几何方法

基本信息

  • 批准号:
    9001861
  • 负责人:
  • 金额:
    $ 4.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1990
  • 资助国家:
    美国
  • 起止时间:
    1990-07-01 至 1993-06-30
  • 项目状态:
    已结题

项目摘要

The principal investigator will study the existence of compact leaves in contact foliations of compact contact manifolds. The existence of these foliations was conjectured by Weinstein. Several special cases have been solved by this investigator and by other mathematicians. Lickorish surgical techniques will be used to investigate the three-dimensional version of the problem. Okumura's theory will be applied to the problem in the case of hypersurfaces with contact types in Kaehler manifolds. Diffeomorphism groups will also be studied. "Manifolds" are generalized surfaces. These may be filled with collections of lower dimensional "leaves." Such collections of leaves are called "foliations." The principal investigator will study leaves which do not wrap on continuously but actually close up. These are called in the literature, "compact leaves." Such are particularly important in applications to other sciences in that they represent, in a general sense, behavior which repeats indefinitely.
主要研究者将研究紧凑接触歧管的接触叶中的紧凑叶叶的存在。 这些叶子的存在是由温斯坦猜想的。 该调查员和其他数学家已经解决了一些特殊案例。 Lickorish手术技术将用于研究该问题的三维版本。 如果在Kaehler歧管中具有接触类型的Hypersurfaces,Okumura的理论将应用于该问题。 还将研究差异组。 “流形”是广义的表面。 这些可能充满了较低维的“叶子”的集合。 这样的叶子被称为“叶子”。 首席研究人员将研究不连续包裹但实际上关闭的叶子。 这些在文献中被称为“紧凑的叶子”。 这在应用于其他科学的应用中尤其重要,因为它们在一般意义上代表了无限期重复的行为。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Augustin Banyaga其他文献

Augustin Banyaga的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Augustin Banyaga', 18)}}的其他基金

Mathematical Sciences: The Geometry of Completely Integrable Toric Contact Forms and Related Problems
数学科学:完全可积环面接触形式的几何及相关问题
  • 批准号:
    9403196
  • 财政年份:
    1994
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Standard Grant

相似国自然基金

实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
  • 批准号:
    82303925
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
游戏化mHealth干预模式下精神障碍出院患者自杀风险管理策略的实施科学研究——基于多阶段优化策略
  • 批准号:
    72374095
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
基于成分转化-体内时空分布-空间代谢组学整体耦联阐释女贞子蒸制的科学内涵
  • 批准号:
    82374041
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
虚拟实验环境下科学探究过程自动监测与适应性反馈研究
  • 批准号:
    62377005
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于胆汁酸/CCL2/CCR2+TAMs代谢免疫穿越调控探讨乳腺癌“肝——乳”轴科学内涵与干预研究
  • 批准号:
    82374446
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Geometric and functional data analysis for spatiotemporal data mining in medicine and life sciences
医学和生命科学中时空数据挖掘的几何和功能数据分析
  • 批准号:
    21K21316
  • 财政年份:
    2021
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Geometric modeling and Monte Carlo simulations for anisotropic and non-linear deformation of polymeric materials
聚合物材料各向异性和非线性变形的几何建模和蒙特卡罗模拟
  • 批准号:
    17K05149
  • 财政年份:
    2017
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Large scale parallelization for geometric computation and mathematical optimization
用于几何计算和数学优化的大规模并行化
  • 批准号:
    16H02785
  • 财政年份:
    2016
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CBMS Conference: Topological and Geometric Methods in Quantum Field Theory NSF-CBMS Regional Conference in the Mathematical Sciences
CBMS 会议:量子场论中的拓扑和几何方法 NSF-CBMS 数学科学区域会议
  • 批准号:
    1642636
  • 财政年份:
    2016
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometric methods in the representation theory of affine Hecke algebras, finite reductive groups and character sheaves
数学科学:仿射 Hecke 代数、有限约简群和特征轮表示论中的几何方法
  • 批准号:
    1303060
  • 财政年份:
    2013
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了