喵ID:yqo72j免责声明

Influence of data preprocessing on neural network performance for reproducing CFD simulations of non-isothermal indoor airflow distribution

基本信息

DOI:
10.1016/j.enbuild.2020.110525
发表时间:
2021-01-01
影响因子:
6.7
通讯作者:
Ooka, Ryozo
中科院分区:
工程技术2区
文献类型:
Article
作者: Zhou, Qi;Ooka, Ryozo研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

The indoor environment is important to the daily lives of humans. Fast and accurate prediction of indoor environments is desirable with regard to practical applications, such as coupled simulation, inverse design, and system control. Neural network (NN) is a popular machine learning model used to build pings between target variables with nonlinear relations. To confirm the feasibility of an NN for fast accurate prediction of indoor environments (including both velocity and temperature distributions), dimensional non-isothermal cases are set and an NN model is constructed in this study, where the inputs are boundary conditions (i.e. inlet velocity, temperature and window surface temperature) and outputs are velocity and temperature distributions. Various data preprocessing methods are utilized, and results are compared to reveal the impact of data preprocessing on NN performance. The results show that, for most cases, different preprocessing methods can lead to similar NN performances with a prediction time of approximately 350 its for each case and a prediction error of less than 10% for the maximum value and 5% for the mean value. Without data preprocessing, error submergence is likely to occur, the gradient descent algorithm may fail to reduce errors of variables with smaller orders of magnitude during the training process. Separate prediction of multiple variables without data preprocessing achieve accurate predictions as simultaneous prediction with data preprocessing; however, the computation cost for training multiple NNs for separate predictions should be considered. (C) 2020 Elsevier B.V. All rights reserved.
室内环境对人类的日常生活至关重要。在耦合模拟、逆向设计和系统控制等实际应用方面,对室内环境进行快速且准确的预测是非常必要的。神经网络(NN)是一种流行的机器学习模型,用于在具有非线性关系的目标变量之间建立联系。为了证实神经网络用于快速准确预测室内环境(包括速度和温度分布)的可行性,本研究设定了非等温的有因次情况,并构建了一个神经网络模型,其中输入为边界条件(即入口速度、温度和窗户表面温度),输出为速度和温度分布。采用了各种数据预处理方法,并对结果进行比较,以揭示数据预处理对神经网络性能的影响。结果表明,在大多数情况下,不同的预处理方法可使神经网络具有相似的性能,每种情况的预测时间约为350秒,最大值的预测误差小于10%,平均值的预测误差小于5%。如果不进行数据预处理,可能会出现误差淹没现象,梯度下降算法可能无法在训练过程中降低数量级较小的变量的误差。在不进行数据预处理的情况下对多个变量分别进行预测,其准确性与进行数据预处理后同时预测的准确性相当;然而,应该考虑为分别预测而训练多个神经网络的计算成本。© 2020爱思唯尔有限公司。保留所有权利。
参考文献(52)
被引文献(0)

数据更新时间:{{ references.updateTime }}

关联基金

Construction of digital twin that fuses AI and physical model to optimize building energy system
批准号:
20H00273
批准年份:
2020
资助金额:
29.12
项目类别:
Grant-in-Aid for Scientific Research (A)
Ooka, Ryozo
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓