喵ID:ynUF33免责声明

Comparison of Statistical Tests and Power Analysis for Phosphoproteomics Data.

基本信息

DOI:
10.1021/acs.jproteome.9b00280
发表时间:
2020-02-07
影响因子:
4.4
通讯作者:
Xu W
中科院分区:
生物学2区
文献类型:
Journal Article
作者: Ding LJ;Schlüter HM;Szucs MJ;Ahmad R;Wu Z;Xu W研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Advances in protein tagging and mass spectrometry (MS) have enabled generation of large quantitative proteome and phosphoproteome data sets, for identifying differentially expressed targets in case-control studies. Power study of statistical tests is critical for designing strategies for effective target identification and control of experimental cost. Here, we develop a simulation framework to generate realistic phospho-peptide data with known changes between cases and controls. Using this framework, we quantify the performance of traditional t-tests, Bayesian tests, and the ranking-by-fold-change test. Bayesian tests, which share variance information among peptides, outperform the traditional t-tests. Although ranking-by-fold-change has similar power as the Bayesian tests, its type I error rate cannot be properly controlled without proper permutation analysis; therefore, simply relying on the ranking likely brings false positives. Two-sample Bayesian tests considering dependencies between intensity and variance are superior for data sets with complex variance. While increasing the sample size enhances the statistical tests’ performance, balanced controls and cases are recommended over a one-side weighted group. Further, higher peptide standard deviations require higher fold changes to achieve the same statistical power. Together, these results highlight the importance of model-informed experimental design and principled statistical analyses when working with large-scale proteomic and phosphoproteomic data.
蛋白质标记和质谱(MS)技术的进步使得能够生成大量的定量蛋白质组和磷酸化蛋白质组数据集,用于在病例对照研究中识别差异表达的靶点。统计检验的功效研究对于设计有效靶点识别策略和控制实验成本至关重要。在此,我们开发了一个模拟框架,以生成具有病例和对照之间已知变化的真实磷酸肽数据。利用该框架,我们量化了传统t检验、贝叶斯检验和倍数变化排序检验的性能。贝叶斯检验在肽段之间共享方差信息,其性能优于传统t检验。尽管倍数变化排序检验与贝叶斯检验具有相似的功效,但如果不进行适当的置换分析,其I型错误率无法得到恰当控制;因此,仅仅依赖排序可能会带来假阳性结果。考虑强度和方差之间相关性的两样本贝叶斯检验对于具有复杂方差的数据集更为优越。虽然增加样本量可提高统计检验的性能,但建议对照组和病例组保持平衡,而不是一侧加权。此外,较高的肽段标准差需要更高的倍数变化才能达到相同的统计功效。总之,这些结果凸显了在处理大规模蛋白质组学和磷酸化蛋白质组学数据时,基于模型的实验设计和合理的统计分析的重要性。
参考文献(0)
被引文献(0)
Normalization and Statistical Analysis of Quantitative Proteomics Data Generated by Metabolic Labeling
DOI:
10.1074/mcp.m800462-mcp200
发表时间:
2009-10-01
期刊:
MOLECULAR & CELLULAR PROTEOMICS
影响因子:
7
作者:
Ting, Lily;Cowley, Mark J.;Cavicchioli, Ricardo
通讯作者:
Cavicchioli, Ricardo
Tandem mass tags:: A novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS
DOI:
10.1021/ac0262560
发表时间:
2003-04-15
期刊:
ANALYTICAL CHEMISTRY
影响因子:
7.4
作者:
Thompson, A;Schäfer, J;Hamon, C
通讯作者:
Hamon, C
Bayesian mixture model based clustering of replicated microarray data
DOI:
10.1093/bioinformatics/bth068
发表时间:
2004-05-22
期刊:
BIOINFORMATICS
影响因子:
5.8
作者:
Medvedovic, M;Yeung, KY;Bumgarner, RE
通讯作者:
Bumgarner, RE
ROBUST HYPERPARAMETER ESTIMATION PROTECTS AGAINST HYPERVARIABLE GENES AND IMPROVES POWER TO DETECT DIFFERENTIAL EXPRESSION.
DOI:
10.1214/16-aoas920
发表时间:
2016-06
期刊:
The annals of applied statistics
影响因子:
0
作者:
Phipson B;Lee S;Majewski IJ;Alexander WS;Smyth GK
通讯作者:
Smyth GK
CLK2 inhibition ameliorates autistic features associated with SHANK3 deficiency
DOI:
10.1126/science.aad5487
发表时间:
2016-03-11
期刊:
SCIENCE
影响因子:
56.9
作者:
Bidinosti, Michael;Botta, Paolo;Galimberti, Ivan
通讯作者:
Galimberti, Ivan

数据更新时间:{{ references.updateTime }}

Xu W
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓