喵ID:xwRLy4免责声明

隐变量模型及其在贝叶斯运营模态分析的应用

基本信息

DOI:
--
发表时间:
2023
期刊:
振动工程学报
影响因子:
--
通讯作者:
陈笑宇
中科院分区:
其他
文献类型:
--
作者: 朱伟;李宾宾;谢炎龙;陈笑宇研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

The Bayesian FFT algorithm is the latest generation of algorithms for operational modal analysis and has received extensive attention for its advantages such as high accuracy, fast calculation speed, and effective uncertainty measurement. However, existing methods need to adopt different optimization algorithms for different situations (sparse modes, dense modes, multi-step tests, etc.), and the programming implementation is extremely complex. Therefore, this paper aims to propose a unified framework for the Bayesian FFT algorithm in different situations and achieve efficient solution of modal parameters. Firstly, regarding the structural modal response as a latent variable, a latent variable model framework for single-step and multi-step Bayesian modal identification tests is established; then, for the proposed latent variable model, the Expectation-Maximization algorithm is used to achieve unified Bayesian inference of modal parameters in various situations, the latent variable is used to decouple the modal parameter optimization process, and the Louis equation is used to indirectly obtain the Hessian matrix of the likelihood function; finally, through two actual engineering test cases and comparison with existing methods, the accuracy and efficiency of the proposed method are verified. The analysis results show that the algorithm proposed in this paper has the same results as existing methods, but its derivation is simple and easy to program, and it has obvious computational advantages especially for dense modal identification problems. This paper establishes a unified latent variable model framework for Bayesian modal identification, simplifies the originally cumbersome and lengthy derivation to a large extent, improves computational efficiency, and also provides the possibility for applying algorithms such as variational Bayes and Gibbs sampling to solve Bayesian modal identification.
贝叶斯FFT 算法是运营模态分析的最新一代算法,以其准确性高、计算速度快、可有效进行不确定性度量等.优点受到广泛关注。然而,现有方法针对不同情况(稀疏模态、密集模态、多步测试等)需采用不同优化算法,且编程.实现极为复杂。为此,本文旨在提出针对不同情况下贝叶斯FFT 算法的统一框架,并实现模态参数的高效求解。.首先,视结构模态响应为隐变量,建立贝叶斯模态识别单步测试和多步测试的隐变量模型框架;然后,针对提出的隐.变量模型运用期望最大化算法实现各种情况下模态参数的统一贝叶斯推断,利用隐变量解耦模态参数优化过程,采.用Louis 等式间接求取似然函数的Hessian 矩阵;最后,通过两个实际工程测试案例,并与现有方法对比,验证所提.方法的准确性和高效性。分析结果表明,本文所提算法与现有方法结果相同,但其推导简单易编程,尤其对于密集.模态识别问题具有明显的计算优势。本文为贝叶斯模态识别建立起统一的隐变量模型框架,在很大程度上简化本.来繁琐且冗长的推导,提高计算效率,同时也为应用变分贝叶斯、吉布斯采样等算法求解贝叶斯模态识别提供了.可能。
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

关联基金

大跨桥梁快速自动化贝叶斯运营模态分析
批准号:
51908494
批准年份:
2019
资助金额:
27.0
项目类别:
青年科学基金项目
陈笑宇
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓