喵ID:wiWkvC免责声明

Prioritizing protein complexes implicated in human diseases by network optimization.

通过网络优化优先考虑与人类疾病有关的蛋白质复合物

基本信息

DOI:
10.1186/1752-0509-8-s1-s2
发表时间:
2014
影响因子:
--
通讯作者:
Jiang R
中科院分区:
生物2区
文献类型:
Journal Article
作者: Chen Y;Jacquemin T;Zhang S;Jiang R研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

The detection of associations between protein complexes and human inherited diseases is of great importance in understanding mechanisms of diseases. Dysfunctions of a protein complex are usually defined by its member disturbance and consequently result in certain diseases. Although individual disease proteins have been widely predicted, computational methods are still absent for systematically investigating disease-related protein complexes. We propose a method, MAXCOM, for the prioritization of candidate protein complexes. MAXCOM performs a maximum information flow algorithm to optimize relationships between a query disease and candidate protein complexes through a heterogeneous network that is constructed by combining protein-protein interactions and disease phenotypic similarities. Cross-validation experiments on 539 protein complexes show that MAXCOM can rank 382 (70.87%) protein complexes at the top against protein complexes constructed at random. Permutation experiments further confirm that MAXCOM is robust to the network structure and parameters involved. We further analyze protein complexes ranked among top ten for breast cancer and demonstrate that the SWI/SNF complex is potentially associated with breast cancer. MAXCOM is an effective method for the discovery of disease-related protein complexes based on network optimization. The high performance and robustness of this approach can facilitate not only pathologic studies of diseases, but also the design of drugs targeting on multiple proteins.
检测蛋白质复合物与人类遗传性疾病之间的关联对于理解疾病机制具有重要意义。蛋白质复合物的功能失调通常由其成员的紊乱所定义,并因此导致某些疾病。尽管单个疾病相关蛋白质已被广泛预测,但仍然缺乏用于系统研究疾病相关蛋白质复合物的计算方法。 我们提出了一种名为MAXCOM的方法,用于对候选蛋白质复合物进行优先级排序。MAXCOM通过一个异质网络执行最大信息流算法,以优化查询疾病与候选蛋白质复合物之间的关系,该异质网络是通过结合蛋白质 - 蛋白质相互作用和疾病表型相似性构建的。对539个蛋白质复合物进行的交叉验证实验表明,与随机构建的蛋白质复合物相比,MAXCOM能够将382个(70.87%)蛋白质复合物排在首位。置换实验进一步证实MAXCOM对所涉及的网络结构和参数具有稳健性。我们进一步分析了乳腺癌排名前十的蛋白质复合物,并证明SWI/SNF复合物可能与乳腺癌相关。 MAXCOM是一种基于网络优化发现疾病相关蛋白质复合物的有效方法。这种方法的高性能和稳健性不仅可以促进疾病的病理学研究,还可以促进针对多种蛋白质的药物设计。
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Jiang R
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓