喵ID:whYEAG免责声明

Variable Convolution and Pooling Convolutional Neural Network for Text Sentiment Classification

用于文本情感分类的变量卷积和池化卷积神经网络

基本信息

DOI:
10.1109/access.2020.2966726
发表时间:
2020-01-01
期刊:
影响因子:
3.9
通讯作者:
Cai, Yi
中科院分区:
计算机科学3区
文献类型:
Article
作者: Dong, Min;Li, Yongfa;Cai, Yi研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

With the popularity of the internet, the expression of emotions and methods of communication are becoming increasingly abundant, and most of these emotions are transmitted in text form. Text sentiment classification research mainly includes three methods based on sentiment dictionaries, machine learning and deep learning. In recent years, many deep learning-based works have used TextCNN (text convolution neural network) to extract text semantic information for text sentiment analysis. However, TextCNN only considers the length of the sentence when extracting semantic information. It ignores the semantic features between word vectors and only considers the maximum feature value of the feature image in the pooling layer without considering other information. Therefore, in this paper, we propose a convolutional neural network based on multiple convolutions and pooling for text sentiment classification (variable convolution and pooling convolution neural network, VCPCNN). There are three contributions in this paper. First, a multiconvolution and pooling neural network is proposed for the TextCNN network structure. Second, four convolution operations are introduced in the word embedding dimension or direction, which are helpful for mining the local features on the semantic dimensions of word vectors. Finally, average pooling is introduced in the pooling layer, which is beneficial for saving the important feature information of the extracted features. The verification test was carried out on four emotional datasets, including English emotional polarity, Chinese emotional polarity, Chinese subjective and objective emotion and Chinese multicategory. Our apporach is effective in that its result was up to 1.97% higher than that of the TextCNN network.
随着互联网的普及,情感的表达和交流方式变得越来越丰富,且这些情感大多以文本形式传递。文本情感分类研究主要包括基于情感词典、机器学习和深度学习的三种方法。近年来,许多基于深度学习的研究工作使用TextCNN(文本卷积神经网络)提取文本语义信息进行文本情感分析。然而,TextCNN在提取语义信息时仅考虑句子长度,忽略了词向量之间的语义特征,且在池化层仅考虑特征图的最大特征值而不考虑其他信息。因此,在本文中,我们提出一种基于多重卷积和池化的卷积神经网络用于文本情感分类(可变卷积和池化卷积神经网络,VCPCNN)。本文有三个贡献。首先,针对TextCNN网络结构提出了一种多重卷积和池化神经网络。其次,在词嵌入维度或方向上引入了四种卷积操作,这有助于挖掘词向量语义维度上的局部特征。最后,在池化层引入了平均池化,这有利于保存所提取特征的重要特征信息。在四个情感数据集上进行了验证测试,包括英语情感极性、汉语情感极性、汉语主客观情感以及汉语多类别。我们的方法是有效的,其结果比TextCNN网络高出了1.97%。
参考文献(46)
被引文献(0)

数据更新时间:{{ references.updateTime }}

关联基金

基于多模态深度神经网络的人体行为识别技术研究
批准号:
61703168
批准年份:
2017
资助金额:
23.0
项目类别:
青年科学基金项目
Cai, Yi
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓