喵ID:vREcbw免责声明

Identifying Children with Autism Spectrum Disorder Based on Their Face Processing Abnormality: A Machine Learning Framework

根据面部处理异常识别自闭症谱系障碍儿童:机器学习框架

基本信息

DOI:
10.1002/aur.1615
发表时间:
2016-08-01
影响因子:
4.7
通讯作者:
Yi, Li
中科院分区:
医学2区
文献类型:
Article
作者: Liu, Wenbo;Li, Ming;Yi, Li研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

The atypical face scanning patterns in individuals with Autism Spectrum Disorder (ASD) has been repeatedly discovered by previous research. The present study examined whether their face scanning patterns could be potentially useful to identify children with ASD by adopting the machine learning algorithm for the classification purpose. Particularly, we applied the machine learning method to analyze an eye movement dataset from a face recognition task [Yi et al., 2016], to classify children with and without ASD. We evaluated the performance of our model in terms of its accuracy, sensitivity, and specificity of classifying ASD. Results indicated promising evidence for applying the machine learning algorithm based on the face scanning patterns to identify children with ASD, with a maximum classification accuracy of 88.51%. Nevertheless, our study is still preliminary with some constraints that may apply in the clinical practice. Future research should shed light on further valuation of our method and contribute to the development of a multitask and multimodel approach to aid the process of early detection and diagnosis of ASD. (C) 2016 International Society for Autism Research, Wiley Periodicals, Inc.
先前的研究多次发现自闭症谱系障碍(ASD)患者的面部扫描模式不典型。本研究通过采用机器学习算法进行分类,检验他们的面部扫描模式是否可能有助于识别自闭症儿童。具体而言,我们应用机器学习方法分析了一个人脸识别任务中的眼动数据集[Yi等人,2016],对患有和未患有自闭症的儿童进行分类。我们从分类自闭症的准确性、敏感性和特异性方面评估了我们模型的性能。结果表明,基于面部扫描模式应用机器学习算法识别自闭症儿童有很有前景的证据,最高分类准确率为88.51%。然而,我们的研究仍然是初步的,在临床实践中可能存在一些限制。未来的研究应进一步评估我们的方法,并有助于开发一种多任务和多模型的方法,以辅助自闭症的早期检测和诊断过程。(C)2016国际自闭症研究协会,威利期刊公司
参考文献(34)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Yi, Li
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓