喵ID:v9lkPU免责声明

Scalable lazy SMT-based motion planning

基于惰性 SMT 的可扩展运动规划

基本信息

DOI:
10.1109/cdc.2016.7799298
发表时间:
2016
期刊:
2016 IEEE 55th Conference on Decision and Control (CDC)
影响因子:
--
通讯作者:
P. Tabuada
中科院分区:
文献类型:
--
作者: Yasser Shoukry;P. Nuzzo;I. Saha;A. Sangiovanni;S. Seshia;George Pappas;P. Tabuada研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

We present a scalable robot motion planning algorithm for reach-avoid problems. We assume a discrete-time, linear model of the robot dynamics and a workspace described by a set of obstacles and a target region, where both the obstacles and the region are polyhedra. Our goal is to construct a trajectory, and the associated control strategy, that steers the robot from its initial point to the target while avoiding obstacles. Differently from previous approaches, based on the discretization of the continuous state space or uniform discretization of the workspace, our approach, inspired by the lazy satisfiability modulo theory paradigm, decomposes the planning problem into smaller subproblems, which can be efficiently solved using specialized solvers. At each iteration, we use a coarse, obstacle-based discretization of the workspace to obtain candidate high-level, discrete plans that solve a set of Boolean constraints, while completely abstracting the low-level continuous dynamics. The feasibility of the proposed plans is then checked via a convex program, under constraints on both the system dynamics and the control inputs, and new candidate plans are generated until a feasible one is found. To achieve scalability, we show how to generate succinct explanations for the infeasibility of a discrete plan by exploiting a relaxation of the convex program that allows detecting the earliest possible occurrence of an infeasible transition between workspace regions. Simulation results show that our algorithm favorably compares with state-of-the-art techniques and scales well for complex systems, including robot dynamics with up to 50 continuous states.
我们提出了一种用于避障可达问题的可扩展机器人运动规划算法。我们假设机器人动力学具有离散时间线性模型,并且工作空间由一组障碍物和一个目标区域描述,其中障碍物和区域均为多面体。我们的目标是构建一条轨迹以及相关的控制策略,使机器人从初始点驶向目标同时避开障碍物。与先前基于连续状态空间离散化或工作空间均匀离散化的方法不同,我们的方法受惰性可满足性模理论范式的启发,将规划问题分解为更小的子问题,这些子问题可以使用专门的求解器高效求解。在每次迭代中,我们使用基于障碍物的工作空间粗离散化来获得候选的高级离散规划,这些规划解决了一组布尔约束,同时完全抽象了低级连续动力学。然后通过一个凸规划在系统动力学和控制输入的约束下检查所提出规划的可行性,并生成新的候选规划,直到找到一个可行的规划。为了实现可扩展性,我们展示了如何通过利用凸规划的松弛来为离散规划的不可行性生成简洁的解释,这种松弛允许检测工作空间区域之间不可行转换的最早可能发生情况。仿真结果表明,我们的算法与现有技术相比具有优势,并且对于复杂系统(包括具有多达50个连续状态的机器人动力学)具有良好的扩展性。
参考文献(0)
被引文献(31)

数据更新时间:{{ references.updateTime }}

P. Tabuada
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓