喵ID:uSeAsy免责声明

A Real-Time Synchrophasor Data Compression Method Using Singular Value Decomposition

基本信息

DOI:
10.1109/tsg.2021.3114585
发表时间:
2022-01-01
影响因子:
9.6
通讯作者:
Mahseredjian, Jean
中科院分区:
工程技术1区
文献类型:
Article
作者: Pourramezan, Reza;Hassani, Reza;Mahseredjian, Jean研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

The proliferation of phasor measurement units (PMUs) presents new challenges in archiving and processing large amounts of synchrophasor data which necessitates advanced data compression methods. This paper proposes a singular value decomposition (SVD)-based method for compression of synchrophasor data, including magnitude, phase-angle, and complex phasor. The proposed method includes a dimensionality evaluation and reduction technique and a real-time progressive partitioning algorithm. The proposed dimensionality reduction technique employs the measurement uncertainty of PMUs and introduces a threshold criterion on the signal-to-noise ratio (SNR) of SVD modes. Singular modes with high SNR are retained, and those dominated by measurement error are discarded to achieve a high compression ratio (CR) while preserving the critical information with adequate accuracy. The proposed progressive partitioning separates the data corresponding to normal and disturbance conditions by monitoring the dimensionality variations in real-time. The partitions containing the data of similar dimensionality are separately compressed to further improve the accuracy and CR. The performance of the proposed method is evaluated and benchmarked against state-of-the-art methods using both field and simulated PMU data. The results show that the proposed method provides high CR while accurately preserving the critical information of events and disturbances.
相量测量单元(PMU)的大量增加给大量同步相量数据的存档和处理带来了新的挑战,这就需要先进的数据压缩方法。本文提出了一种基于奇异值分解(SVD)的同步相量数据压缩方法,包括幅值、相角和复相量。所提方法包括一种维度评估和降维技术以及一种实时渐进分区算法。所提出的降维技术利用了PMU的测量不确定性,并针对SVD模式的信噪比(SNR)引入了一个阈值标准。保留高信噪比的奇异模式,丢弃受测量误差主导的模式,以便在以足够精度保留关键信息的同时实现高压缩比(CR)。所提出的渐进分区通过实时监测维度变化来分离对应正常和扰动情况的数据。对包含相似维度数据的分区分别进行压缩,以进一步提高精度和压缩比。使用现场和模拟的PMU数据对所提方法的性能进行了评估,并与现有最先进的方法进行了对比。结果表明,所提方法在准确保留事件和扰动关键信息的同时提供了高压缩比。
参考文献(34)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Mahseredjian, Jean
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓