喵ID:uQ5TWh免责声明

Sequential Manipulation of Deformable Linear Object Networks with Endpoint Pose Measurements using Adaptive Model Predictive Control

使用自适应模型预测控制对可变形线性物体网络进行端点位姿测量的顺序操作

基本信息

DOI:
10.48550/arxiv.2402.10372
发表时间:
2024
期刊:
ArXiv
影响因子:
--
通讯作者:
Kira Barton
中科院分区:
文献类型:
--
作者: T. Toner;V. Molazadeh;Miguel Saez;Dawn M. Tilbury;Kira Barton研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Robotic manipulation of deformable linear objects (DLOs) is an active area of research, though emerging applications, like automotive wire harness installation, introduce constraints that have not been considered in prior work. Confined workspaces and limited visibility complicate prior assumptions of multi-robot manipulation and direct measurement of DLO configuration (state). This work focuses on single-arm manipulation of stiff DLOs (StDLOs) connected to form a DLO network (DLON), for which the measurements (output) are the endpoint poses of the DLON, which are subject to unknown dynamics during manipulation. To demonstrate feasibility of output-based control without state estimation, direct input-output dynamics are shown to exist by training neural network models on simulated trajectories. Output dynamics are then approximated with polynomials and found to contain well-known rigid body dynamics terms. A composite model consisting of a rigid body model and an online data-driven residual is developed, which predicts output dynamics more accurately than either model alone, and without prior experience with the system. An adaptive model predictive controller is developed with the composite model for DLON manipulation, which completes DLON installation tasks, both in simulation and with a physical automotive wire harness.
可变形线性物体(DLO)的机器人操作是一个活跃的研究领域,然而新兴的应用,比如汽车线束安装,带来了在先前工作中未被考虑的限制条件。受限的工作空间和有限的可视性使多机器人操作以及DLO形态(状态)的直接测量的先前假设变得复杂。这项工作专注于对连接形成DLO网络(DLON)的刚性DLO(StDLO)进行单臂操作,对于这种操作,测量值(输出)是DLON的端点位姿,在操作过程中其受到未知动力学的影响。为了证明在没有状态估计的情况下基于输出的控制的可行性,通过在模拟轨迹上训练神经网络模型,表明直接的输入 - 输出动力学是存在的。然后用多项式近似输出动力学,并且发现其中包含众所周知的刚体动力学项。开发了一种由刚体模型和在线数据驱动残差组成的复合模型,该模型比单独使用任何一个模型都能更准确地预测输出动力学,而且不需要对系统有先验经验。利用该复合模型为DLON操作开发了一种自适应模型预测控制器,它在模拟环境以及实际的汽车线束中都能完成DLON安装任务。
参考文献(2)
被引文献(0)
Discovering governing equations from data by sparse identification of nonlinear dynamical systems
DOI:
10.1073/pnas.1517384113
发表时间:
2016-04-12
期刊:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
影响因子:
11.1
作者:
Brunton, Steven L.;Proctor, Joshua L.;Kutz, J. Nathan
通讯作者:
Kutz, J. Nathan

数据更新时间:{{ references.updateTime }}

Kira Barton
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓