Room-temperature (RT) thermodynamics of a dopant-atom double quantum dot (DQD) silicon transistor are extracted using measurements of the dual gate charge stability diagram. Current traces corresponding to electron exchange in the Szilard one-electron gas ‘Maxwell Demon’ thermodynamic cycle are determined. Theoretical analysis, based on energy state shifts within the generalised DQD charge stability diagram, is used to map the Szilard cycle entropy exchange to the stability diagram. The restriction on the inter-QD coupling energy E m > kT, necessary to observe DQD operation, is inherently seen to satisfy the Landauer limit, kTln2, for the minimum energy consumption per cycle for 1 bit. Associated entropy flows are extracted and simulated using single-electron Monte Carlo equivalent circuit simulations, from 4.2 to 290 K. An entropy valley, tending to the Szilard limit minimum of −kln2, occurs at degeneracy between neighbouring electron states, with traces persisting to RT. Changes in gate cycle trajectory, device capacitance, and temperature are characterised to establish conditions for RT operation.
利用双栅极电荷稳定性图的测量结果,提取了掺杂原子双量子点(DQD)硅晶体管的室温(RT)热力学特性。确定了与西拉德单电子气“麦克斯韦妖”热力学循环中的电子交换相对应的电流轨迹。基于广义DQD电荷稳定性图内的能态位移进行理论分析,用于将西拉德循环的熵交换映射到稳定性图上。观察到DQD运行所必需的量子点间耦合能\(E_m > kT\)这一限制条件,本质上满足了兰道尔极限\(kT\ln2\),即每比特每次循环的最小能量消耗。在4.2K到290K的温度范围内,利用单电子蒙特卡罗等效电路模拟提取并模拟了相关的熵流。在相邻电子态简并时会出现一个熵谷,趋近于西拉德极限最小值\(-k\ln2\),且其轨迹在室温下仍然存在。对栅极循环轨迹、器件电容和温度的变化进行了表征,以确定室温运行的条件。