喵ID:tTTets免责声明

Academic performance prediction in a gender-imbalanced environment

性别失衡环境下的学业成绩预测

基本信息

DOI:
--
发表时间:
2017
期刊:
影响因子:
--
通讯作者:
Christo Wilson
中科院分区:
文献类型:
--
作者: Piotr Sapiezynski;Valentin Kassarnig;Christo Wilson研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Individual characteristics and informal social processes are among the factors that contribute to a student’s performance in an academic context. Universities can leverage this knowledge to limit drop-out rates and increase performance through interventions targeting at-risk students. Data-driven recommendation systems have been proposed to identify such students for early interventions. However, as we show in this paper, it is possible to identify certain groups of students whose performance is best predicted using indicators that differ from those predictive for the majority. Naïve approaches that do not account for this fact might favor the majority class and lead to disparate mistreatment in the case of minorities. In this paper we investigate the low academic performance predictors of female and male participants of the Copenhagen Networks Study. We find that social indicators (e.g. mean grade point average of peers or fraction of low-performing peers) predict lowperformance of male participants more accurately than they do for female participants, and that this situation is reversed for individual behaviors. Because of the gender imbalance among the participants, optimal gender-oblivious models detect low-performing male students with higher accuracy than low-performing female students. We review the existing approaches to addressing the disparate mistreatment problem and propose our own method that outperforms the alternatives on the dataset in question. ACM Reference format: Piotr Sapiezynski, Valentin Kassarnig, Christo Wilson, Sune Lehmann, and Alan Mislove. 2017. Academic performance prediction in a genderimbalanced environment. In Proceedings of FATRECWorkshop on Responsible Recommendation at ACM RecSys, Como, Italy, August 2017 (FATREC’17), 4 pages. https://doi.org/10.18122/B20Q5R
个人特征和非正式的社会过程是在学术环境中促进学生表现的因素,可以通过针对危险的学生来限制辍学率并增加绩效。最佳预测的指标与大多数人的预测性不同。与女性参与者相比,男性的表现低得多,并且由于参与者的性别失衡而扭转这种情况,与低表现的女性相比,与低表现的女性相比,符合性别的男性的最佳性别不平衡参考格式:Piotr Sapiezynski,Valentin Kassarnig,Christo Wilson,Sune Lehmann和Alan Mislove 22/b20q5r
参考文献(2)
被引文献(27)
UCLA Loneliness Scale (Version 3): Reliability, validity, and factor structure
DOI:
10.1207/s15327752jpa6601_2
发表时间:
1996-02-01
期刊:
JOURNAL OF PERSONALITY ASSESSMENT
影响因子:
3.4
作者:
Russell, DW
通讯作者:
Russell, DW

数据更新时间:{{ references.updateTime }}

Christo Wilson
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓