Spinodal architected materials with tunable anisotropy unify optimal design and manufacturing of multiscale structures. By locally varying the spinodal class, orientation, and porosity during topology optimization, a large portion of the anisotropic material space is exploited such that material is efficiently placed along principal stress trajectories at the microscale. Additionally, the bicontinuous, nonperiodic, unstructured, and stochastic nature of spinodal architected materials promotes mechanical and biological functions not explicitly considered during optimization (e.g., insensitivity to imperfections, fluid transport conduits). Furthermore, in contrast to laminated composites or periodic, structured architected materials (e.g., lattices), the functional representation of spinodal architected materials leads to multiscale, optimized designs with clear physical interpretation that can be manufactured directly, without special treatment at spinodal transitions. Physical models of the optimized, spinodal‐embedded parts are manufactured using a scalable, voxel‐based strategy to communicate with a masked stereolithography (m‐SLA) 3D printer.
具有可调各向异性的旋节线结构材料统一了多尺度结构的优化设计和制造。通过在拓扑优化过程中局部改变旋节线类别、取向和孔隙率,可利用很大一部分各向异性材料空间,从而使材料在微观尺度上沿着主应力轨迹高效分布。此外,旋节线结构材料的双连续、非周期性、无结构和随机性促进了在优化过程中未明确考虑的力学和生物学功能(例如,对缺陷不敏感、流体传输管道)。再者,与层合复合材料或周期性、结构化结构材料(例如,晶格)相比,旋节线结构材料的函数表示可产生具有清晰物理解释的多尺度优化设计,且无需在旋节线转变处进行特殊处理即可直接制造。使用可扩展的、基于体素的策略制造优化的、嵌入旋节线的部件的物理模型,以便与掩模立体光刻(m - SLA)3D打印机进行通信。