喵ID:spdK1B免责声明

Utilization of Machine Learning Approaches to Predict Mortality in Pediatric Warzone Casualties.

利用机器学习方法预测战区儿童伤亡的死亡率。

基本信息

DOI:
--
发表时间:
2022
影响因子:
1.2
通讯作者:
M. Eckert
中科院分区:
医学4区
文献类型:
--
作者: Daniel T. Lammers;James Williams;Jeffrey Conner;A. Francis;B. Prey;Christopher Marenco;Kaitlin R. Morte;J. Horton;M. Barlow;Mauricio A. Escobar;J. Bingham;M. Eckert研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

BACKGROUND Identification of pediatric trauma patients at the highest risk for death may promote optimization of care. This becomes increasingly important in austere settings with constrained medical capabilities. This study aimed to develop and validate predictive models using supervised machine learning (ML) techniques to identify pediatric warzone trauma patients at the highest risk for mortality. METHODS Supervised learning approaches using logistic regression (LR), support vector machine (SVM), neural network (NN), and random forest (RF) models were generated from the Department of Defense Trauma Registry, 2008-2016. Models were tested and compared to determine the optimal algorithm for mortality. RESULTS A total of 2,007 patients (79% male, median age range 7-12 years old, 62.5% sustaining penetrating injury) met the inclusion criteria. Severe injury (Injury Severity Score > 15) was noted in 32.4% of patients, while overall mortality was 7.13%. The RF and SVM models displayed recall values of .9507 and .9150, while LR and NN displayed values of .8912 and .8895, respectively. Random forest (RF) outperformed LR, SVM, and NN on receiver operating curve (ROC) analysis demonstrating an area under the ROC of .9752 versus .9252, .9383, and .8748, respectively. CONCLUSION Machine learning (ML) techniques may prove useful in identifying those at the highest risk for mortality within pediatric trauma patients from combat zones. Incorporation of advanced computational algorithms should be further explored to optimize and supplement the diagnostic and therapeutic decision-making process.
背景 识别死亡风险最高的儿童创伤患者可能有助于优化治疗。在医疗能力受限的艰苦环境中,这一点变得愈发重要。本研究旨在利用有监督的机器学习(ML)技术开发并验证预测模型,以识别战区儿童创伤患者中死亡风险最高的人群。 方法 利用逻辑回归(LR)、支持向量机(SVM)、神经网络(NN)和随机森林(RF)模型的有监督学习方法是从2008 - 2016年美国国防部创伤登记处的数据中生成的。对这些模型进行了测试和比较,以确定用于预测死亡率的最佳算法。 结果 共有2007名患者符合纳入标准(79%为男性,年龄中位数范围为7 - 12岁,62.5%遭受穿透性损伤)。32.4%的患者有严重损伤(损伤严重程度评分>15),而总体死亡率为7.13%。随机森林(RF)和支持向量机(SVM)模型的召回值分别为0.9507和0.9150,而逻辑回归(LR)和神经网络(NN)的值分别为0.8912和0.8895。在受试者工作特征曲线(ROC)分析中,随机森林(RF)优于LR、SVM和NN,其ROC曲线下面积分别为0.9752,而LR、SVM和NN分别为0.9252、0.9383和0.8748。 结论 机器学习(ML)技术可能有助于识别战区儿童创伤患者中死亡风险最高的人群。应进一步探索纳入先进的计算算法,以优化和补充诊断及治疗决策过程。
参考文献(2)
被引文献(0)
Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach
DOI:
10.1111/acem.12876
发表时间:
2016-03-01
期刊:
ACADEMIC EMERGENCY MEDICINE
影响因子:
4.4
作者:
Taylor, R. Andrew;Pare, Joseph R.;Hall, M. Kennedy
通讯作者:
Hall, M. Kennedy
Global and National Burden of Diseases and Injuries Among Children and Adolescents Between 1990 and 2013: Findings From the Global Burden of Disease 2013 Study.
DOI:
10.1001/jamapediatrics.2015.4276
发表时间:
2016-03
期刊:
JAMA PEDIATRICS
影响因子:
26.1
作者:
Kyu, Hmwe H.;Pinho, Christine;Wagner, Joseph A.;Brown, Jonathan C.;Bertozzi-Villa, Amelia;Charlson, Fiona J.;Coffeng, Luc Edgar;Dandona, Lalit;Erskine, Holly E.;Ferrari, Alize J.;Fitzmaurice, Christina;Fleming, Thomas D.;Forouzanfar, Mohammad H.;Graetz, Nicholas;Guinovart, Caterina;Haagsma, Juanita;Higashi, Hideki;Kassebaum, Nicholas J.;Larson, Heidi J.;Lim, Stephen S.;Mokdad, Ali H.;Moradi-Lakeh, Maziar;Odell, Shaun V.;Roth, Gregory A.;Serina, Peter T.;Stanaway, Jeffrey D.;Misganaw, Awoke;Whiteford, Harvey A.;Wolock, Timothy M.;Hanson, Sarah Wulf;Abd-Allah, Foad;Abera, Semaw Ferede;Abu-Raddad, Laith J.;AlBuhairan, Fadia S.;Amare, Azmeraw T.;Antonio, Carl Abelardo T.;Artaman, Al;Barker-Collo, Suzanne L.;Barrero, Lope H.;Benjet, Corina;Bensenor, Isabela M.;Bhutta, Zulfiqar A.;Bikbov, Boris;Brazinova, Alexandra;Campos-Nonato, Ismael;Castaneda-Orjuela, Carlos A.;Catala-Lopez, Ferran;Chowdhury, Rajiv;Cooper, Cyrus;Crump, John A.;Dandona, Rakhi;Degenhardt, Louisa;Dellavalle, Robert P.;Dharmaratne, Samath D.;Faraon, Emerito Jose A.;Feigin, Valery L.;Fuerst, Thomas;Geleijnse, Johanna M.;Gessner, Bradford D.;Gibney, Katherine B.;Goto, Atsushi;Gunnell, David;Hankey, Graeme J.;Hay, Roderick J.;Hornberger, John C.;Hosgood, H. Dean;Hu, Guoqing;Jacobsen, Kathryn H.;Jayaraman, Sudha P.;Jeemon, Panniyammakal;Jonas, Jost B.;Karch, Andre;Kim, Daniel;Kim, Sungroul;Kokubo, Yoshihiro;Defo, Barthelemy Kuate;Bicer, Burcu Kucuk;Kumar, G. Anil;Larsson, Anders;Leasher, Janet L.;Leung, Ricky;Li, Yongmei;Lipshultz, Steven E.;Lopez, Alan D.;Lotufo, Paulo A.;Lunevicius, Raimundas;Lyons, Ronan A.;Majdan, Marek;Malekzadeh, Reza;Mashal, Taufiq;Mason-Jones, Amanda J.;Melaku, Yohannes Adama;Memish, Ziad A.;Mendoza, Walter;Miller, Ted R.;Mock, Charles N.;Murray, Joseph;Nolte, Sandra;Oh, In-Hwan;Olusanya, Bolajoko Olubukunola;Ortblad, Katrina F.;Park, Eun-Kee;Paternina Caicedo, Angel J.;Patten, Scott B.;Patton, George C.;Pereira, David M.;Perico, Norberto;Piel, Frederic B.;Polinder, Suzanne;Popova, Svetlana;Pourmalek, Farshad;Quistberg, D. Alex;Remuzzi, Giuseppe;Rodriguez, Alina;Rojas-Rueda, David;Rothenbacher, Dietrich;Rothstein, David H.;Sanabria, Juan;Santos, Itamar S.;Schwebel, David C.;Sepanlou, Sadaf G.;Shaheen, Amira;Shiri, Rahman;Shiue, Ivy;Skirbekk, Vegard;Sliwa, Karen;Sreeramareddy, Chandrashekhar T.;Stein, Dan J.;Steiner, Timothy J.;Stovner, Lars Jacob;Sykes, Bryan L.;Tabb, Karen M.;Terkawi, Abdullah Sulieman;Thomson, Alan J.;Thorne-Lyman, Andrew L.;Towbin, Jeffrey Allen;Ukwaja, Kingsley Nnanna;Vasankari, Tommi;Venketasubramanian, Narayanaswamy;Vlassov, Vasiliy Victorovich;Vollset, Stein Emil;Weiderpass, Elisabete;Weintraub, Robert G.;Werdecker, Andrea;Wilkinson, James D.;Woldeyohannes, Solomon Meseret;Wolfe, Charles D. A.;Yano, Yuichiro;Yip, Paul;Yonemoto, Naohiro;Yoon, Seok-Jun;Younis, Mustafa Z.;Yu, Chuanhua;Zaki, Maysaa El Sayed;Naghavi, Mohsen;Murray, Christopher J. L.;Vos, Theo
通讯作者:
Vos, Theo

数据更新时间:{{ references.updateTime }}

M. Eckert
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓