喵ID:rSZx5c免责声明

Process-specific somatic mutation distributions vary with three-dimensional genome structure

过程特异性体细胞突变分布随三维基因组结构而变化

基本信息

DOI:
--
发表时间:
2018
期刊:
bioRxiv
影响因子:
--
通讯作者:
A. Futreal
中科院分区:
文献类型:
--
作者: K. Akdemir;Victoria T. Le;S. Killcoyne;Devin A. King;Ya;Yanyan Tian;Akire Inoue;S. Amin;Frederick S. Robinson;R. Herrera;E. Lynn;Kin Chan;S. Seth;L. Klimczak;M. Gerstung;D. Gordenin;John O’Brien;Lei Li;R. Verhaak;P. Campbell;R. Fitzgerald;Ashby J. Morrison;Jesse R. Dixon;A. Futreal研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Somatic mutations arise during the life history of a cell. Mutations occurring in cancer driver genes may ultimately lead to the development of clinically detectable disease. Nascent cancer lineages continue to acquire somatic mutations throughout the neoplastic process and during cancer evolution (Martincorena and Campbell, 2015). Extrinsic and endogenous mutagenic factors contribute to the accumulation of these somatic mutations (Zhang and Pellman, 2015). Understanding the underlying factors generating somatic mutations is crucial for developing potential preventive, therapeutic and clinical decisions. Earlier studies have revealed that DNA replication timing (Stamatoyannopoulos et al., 2009) and chromatin modifications (Schuster-Böckler and Lehner, 2012) are associated with variations in mutational density. What is unclear from these early studies, however, is whether all extrinsic and exogenous factors that drive somatic mutational processes share a similar relationship with chromatin state and structure. In order to understand the interplay between spatial genome organization and specific individual mutational processes, we report here a study of 3000 tumor-normal pair whole genome datasets from more than 40 different human cancer types. Our analyses revealed that different mutational processes lead to distinct somatic mutation distributions between chromatin folding domains. APOBEC- or MSI-related mutations are enriched in transcriptionally-active domains while mutations occurring due to tobacco-smoke, ultraviolet (UV) light exposure or a signature of unknown aetiology (signature 17) enrich predominantly in transcriptionally-inactive domains. Active mutational processes dictate the mutation distributions in cancer genomes, and we show that mutational distributions shift during cancer evolution upon mutational processes switch. Moreover, a dramatic instance of extreme chromatin structure in humans, that of the unique folding pattern of the inactive X-chromosome leads to distinct somatic mutation distribution on X chromosome in females compared to males in various cancer types. Overall, the interplay between three-dimensional genome organization and active mutational processes has a substantial influence on the large-scale mutation rate variations observed in human cancer.
体细胞突变在细胞的生命历程中产生。发生在癌症驱动基因中的突变可能最终导致临床上可检测到的疾病的发展。新生的癌症谱系在肿瘤形成过程以及癌症演化过程中持续获得体细胞突变(马丁科雷纳和坎贝尔,2015年)。外在和内源性诱变因素导致这些体细胞突变的积累(张和佩尔曼,2015年)。了解产生体细胞突变的潜在因素对于制定潜在的预防、治疗和临床决策至关重要。早期研究表明,DNA复制时间(斯塔马托扬诺普洛斯等人,2009年)和染色质修饰(舒斯特 - 博克勒和莱纳,2012年)与突变密度的变化有关。然而,从这些早期研究中不清楚的是,驱动体细胞突变过程的所有外在和外源性因素是否与染色质状态和结构具有相似的关系。为了理解空间基因组组织与特定个体突变过程之间的相互作用,我们在此报告了一项对来自40多种不同人类癌症类型的3000个肿瘤 - 正常配对全基因组数据集的研究。我们的分析表明,不同的突变过程导致染色质折叠结构域之间体细胞突变分布不同。APOBEC或微卫星不稳定性(MSI)相关突变在转录活跃结构域富集,而由于烟草烟雾、紫外线(UV)照射或病因不明的特征(特征17)导致的突变主要在转录不活跃结构域富集。活跃的突变过程决定了癌症基因组中的突变分布,并且我们表明在突变过程转换时,癌症演化过程中突变分布会发生变化。此外,人类中一种极端染色质结构的显著例子,即失活X染色体的独特折叠模式,导致在各种癌症类型中女性X染色体上的体细胞突变分布与男性不同。总体而言,三维基因组组织与活跃突变过程之间的相互作用对在人类癌症中观察到的大规模突变率变化具有重大影响。
参考文献(6)
被引文献(0)
APOBEC-Induced Cancer Mutations Are Uniquely Enriched in Early-Replicating, Gene-Dense, and Active Chromatin Regions.
DOI:
10.1016/j.celrep.2015.09.077
发表时间:
2015-11-10
期刊:
Cell reports
影响因子:
8.8
作者:
Kazanov MD;Roberts SA;Polak P;Stamatoyannopoulos J;Klimczak LJ;Gordenin DA;Sunyaev SR
通讯作者:
Sunyaev SR
From Mutational Mechanisms in Single Cells to Mutational Patterns in Cancer Genomes.
DOI:
10.1101/sqb.2015.80.027623
发表时间:
2015
期刊:
Cold Spring Harbor symposia on quantitative biology
影响因子:
0
作者:
Cheng-Zhong Zhang;D. Pellman
通讯作者:
Cheng-Zhong Zhang;D. Pellman
Rethinking transcription coupled DNA repair.
DOI:
10.1016/j.mib.2014.12.005
发表时间:
2015-04
期刊:
Current opinion in microbiology
影响因子:
5.4
作者:
Kamarthapu V;Nudler E
通讯作者:
Nudler E
Chromatin Domains: The Unit of Chromosome Organization.
DOI:
10.1016/j.molcel.2016.05.018
发表时间:
2016-06-02
期刊:
Molecular cell
影响因子:
16
作者:
Dixon JR;Gorkin DU;Ren B
通讯作者:
Ren B
Eukaryotic Mismatch Repair in Relation to DNA Replication.
DOI:
10.1146/annurev-genet-112414-054722
发表时间:
2015
期刊:
Annual review of genetics
影响因子:
11.1
作者:
Kunkel TA;Erie DA
通讯作者:
Erie DA

数据更新时间:{{ references.updateTime }}

A. Futreal
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓