喵ID:rSPx5M免责声明

Indoor Sound Source Localization Algorithm Based on BP Neural Network

基本信息

DOI:
10.1109/icct52962.2021.9658082
发表时间:
2021-01-01
期刊:
2021 IEEE 21st International Conference on Communication Technology (ICCT)
影响因子:
--
通讯作者:
Xixi Fu
中科院分区:
其他
文献类型:
Conference Paper
作者: Lan Wang;Kun Zhang;Xixi Fu研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Sound source localization is an important part of the perception of things around. Sound source localization can overcome the shortcomings of visual localization, and can also locate the invisible place. The application of sound source localization in indoor is the latest trend. Starting from the application of deep learning to indoor sound source localization, this paper focuses on the analysis and research of BP neural network applied to indoor sound source localization algorithm. In this paper, an off-line sampling scheme is used to construct the network structure with 7 neurons hidden in the layer, and the BP algorithm of LevenBerg-Marquardt is used as the training function, this algorithm can solve the traditional algorithm through the study of the physical properties of sound, set up the corresponding equation, and then solve, the process is complex, to solve the difficult problem. The simulation results show that the algorithm can be implemented in 100 square meters of the house, through sampling 400 sets of data for machine training, positioning error can be controlled in a few centimeters effect.
声源定位是对周围事物感知的重要部分。声源定位能够克服视觉定位的缺陷,还能对看不见的地方进行定位。声源定位在室内的应用是最新的趋势。本文从深度学习在室内声源定位中的应用出发,重点对应用于室内声源定位算法的BP神经网络进行分析和研究。本文采用离线采样方案构建了隐藏层有7个神经元的网络结构,并采用LevenBerg - Marquardt的BP算法作为训练函数,该算法通过对声音物理特性的研究来解决传统算法需建立相应方程然后求解,过程复杂、求解困难的问题。仿真结果表明,该算法在100平方米的房屋内可实现,通过对400组数据进行采样用于机器训练,定位误差可控制在几厘米的效果。
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Xixi Fu
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓