喵ID:qyM2XY免责声明

Analysing the shape memory behaviour of GnP-enhanced nanocomposites: a comparative study between experimental and finite element analysis

分析 GnP 增强纳米复合材料的形状记忆行为:实验分析与有限元分析之间的比较研究

基本信息

DOI:
10.1088/1361-651x/ad4d0a
发表时间:
2024
影响因子:
1.8
通讯作者:
U. Pandel
中科院分区:
材料科学3区
文献类型:
--
作者: Ritesh Gupta;Gaurav Mittal;Krishna Kumar;U. Pandel研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Shape memory polymers (SMPs) are capable of enduring significant deformations and returning to their original form upon activation by certain external stimuli. However, their restricted mechanical and thermal capabilities have limited their broader application in engineering fields. To address this, the integration of graphene nanoplatelets (GnPs) with SMPs has proven effective in enhancing their mechanical and thermal properties while maintaining inherent shape memory functions. The study evaluated shape memory nanocomposites (SMNCs) using dynamic mechanical, thermogravimetric, and static tensile, flexural, and shape memory tests, along with scanning electron microscopy to analyse tensile fractures. The results indicate that the optimal content of GnP is 0.6 wt%, resulting in excellent shape memory, thermal, and mechanical properties. Specifically, this composition demonstrates a shape recovery ratio of 94.02%, a storage modulus of 4580.07 MPa, a tensile strength of 61.42 MPa, and a flexural strength of 116.37 MPa. Additionally, the incorporation of GnPs into epoxy reduces recovery times by up to 52% at the 0.6 wt% concentration. While there is a slight decrease in the shape fixity ratio from 98.77% to 93.02%, the shape recoverability remains consistently high across all samples. Current finite element (FE) models often necessitate complex, problem-specific user subroutines, which can impede the straightforward application of research findings in real-world settings. To address this, the current study introduces an innovative finite element simulation method using the widely used ABAQUS software to model the thermomechanical behaviour of SMNCs, importantly incorporating the time-dependent viscoelastic behaviour of the material. The effectiveness of this new approach was tested by comparing experimental results from bending test of SMNCs cantilever beam with outcomes derived from FE simulations. The strong agreement between the experimental data and simulation results confirmed the precision and reliability of this novel technique.
形状记忆聚合物(SMPs)能够承受显著的变形,并在受到某些外部刺激激活时恢复到其原始形状。然而,它们有限的力学和热学性能限制了它们在工程领域更广泛的应用。为了解决这个问题,将石墨烯纳米片(GnPs)与形状记忆聚合物结合已被证明在提高其力学和热学性能的同时能保持固有的形状记忆功能是有效的。该研究通过动态力学、热重分析以及静态拉伸、弯曲和形状记忆测试,并结合扫描电子显微镜分析拉伸断裂来评估形状记忆纳米复合材料(SMNCs)。结果表明,GnP的最佳含量为0.6 wt%,这使得材料具有优异的形状记忆、热学和力学性能。具体而言,这种成分的形状恢复率为94.02%,储能模量为4580.07 MPa,拉伸强度为61.42 MPa,弯曲强度为116.37 MPa。此外,在0.6 wt%的浓度下,将GnPs掺入环氧树脂可使恢复时间缩短多达52%。虽然形状固定率从98.77%略微下降到93.02%,但所有样品的形状恢复能力始终保持较高水平。当前的有限元(FE)模型通常需要复杂的、针对特定问题的用户子程序,这可能会阻碍研究成果在实际环境中的直接应用。为了解决这个问题,本研究引入了一种创新的有限元模拟方法,使用广泛应用的ABAQUS软件对形状记忆纳米复合材料的热机械行为进行建模,重要的是纳入了材料随时间变化的粘弹性行为。通过将形状记忆纳米复合材料悬臂梁弯曲试验的实验结果与有限元模拟得出的结果进行比较,测试了这种新方法的有效性。实验数据和模拟结果之间的高度一致性证实了这种新技术的精确性和可靠性。
参考文献(4)
被引文献(0)
Graphene-based composite materials
DOI:
10.1038/nature04969
发表时间:
2006-07-20
期刊:
NATURE
影响因子:
64.8
作者:
Stankovich, Sasha;Dikin, Dmitriy A.;Ruoff, Rodney S.
通讯作者:
Ruoff, Rodney S.
Dynamic mechanical analysis for rapid assessment of the time-dependent recovery behavior of shape memory polymers
DOI:
10.1088/0964-1726/22/7/075037
发表时间:
2013-06
期刊:
Smart Materials and Structures
影响因子:
4.1
作者:
C. Azra;C. Plummer;J. Månson
通讯作者:
C. Azra;C. Plummer;J. Månson
Thermomechanical constitutive modeling in shape memory polymer of polyurethane series
DOI:
10.1177/1045389x9700800808
发表时间:
1997-08-01
期刊:
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES
影响因子:
2.7
作者:
Tobushi, H;Hashimoto, T;Yamada, E
通讯作者:
Yamada, E
Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials
DOI:
10.1126/science.1194975
发表时间:
2011-02-04
期刊:
SCIENCE
影响因子:
56.9
作者:
Coleman, Jonathan N.;Lotya, Mustafa;Nicolosi, Valeria
通讯作者:
Nicolosi, Valeria

数据更新时间:{{ references.updateTime }}

U. Pandel
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓