喵ID:qbZMMy免责声明

Solutions for Multiagent Pursuit-Evasion Games on Communication Graphs: Finite-Time Capture and Asymptotic Behaviors

基本信息

DOI:
10.1109/tac.2019.2926554
发表时间:
2020-05
影响因子:
6.8
通讯作者:
V. Lopez;F. Lewis;Yan Wan;E. Sánchez;Lingling Fan-
中科院分区:
计算机科学2区
文献类型:
--
作者: V. Lopez;F. Lewis;Yan Wan;E. Sánchez;Lingling Fan-研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

In this paper, the multiagent pursuit-evasion (MPE) games are solved in order to obtain optimal strategic policies for all players. In these games, multiple pursuers attempt to intercept multiple evaders who try to avoid capture. A graph-theoretic approach is employed to study the interactions of the agents with limited sensing capabilities, such that distributed control policies are obtained for every agent. Furthermore, the minimization of performance indices associated with the goals of the agents is guaranteed. Nash equilibrium among the players is obtained by means of optimal policies that use the solutions of the Hamilton–Jacobi–Isaacs (HJI) equations of the game. Minmax strategies are also proposed to guarantee a security-level performance when the solutions of the HJI equations for Nash equilibrium do not exist. Scenarios for finite-time capture and for asymptotic rendezvous are analyzed, and emergent behaviors are obtained by means of modifications of the proposed general-case performance indices. The containment control results are shown to be special cases of the solutions of the MPE games.
在本文中,对多智能体追逃(MPE)博弈进行求解,以便为所有参与者获得最优策略。在这些博弈中,多个追击者试图拦截多个试图躲避抓捕的逃逸者。采用图论方法来研究具有有限感知能力的智能体之间的相互作用,从而为每个智能体获得分布式控制策略。此外,保证了与智能体目标相关的性能指标最小化。通过使用博弈的哈密顿 - 雅可比 - 艾萨克斯(HJI)方程的解的最优策略,在参与者之间获得纳什均衡。当纳什均衡的HJI方程无解时,还提出了极大极小策略以保证安全级别的性能。对有限时间捕获和渐近会合的情形进行了分析,并通过对所提出的一般情况性能指标进行修改获得了涌现行为。 containment控制结果被证明是MPE博弈解的特殊情况。
参考文献(33)
被引文献(61)

数据更新时间:{{ references.updateTime }}

V. Lopez;F. Lewis;Yan Wan;E. Sánchez;Lingling Fan-
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓