喵ID:qahaPe免责声明

Radiative and Non-Radiative Lifetime Engineering of Quantum Dots in Multiple Solvents by Surface Atom Stoichiometry and Ligands.

基本信息

DOI:
10.1021/jp309368q
发表时间:
2013-02-07
影响因子:
3.7
通讯作者:
Heyes, Colin D.
中科院分区:
化学3区
文献类型:
Journal Article
作者: Omogo, Benard;Aldana, Jose F.;Heyes, Colin D.研究方向: Chemistry;Science & Technology - Other Topics;Materials ScienceMeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

CdTe quantum dots have unique characteristics that are promising for applications in photoluminescence, photovoltaics or optoelectronics. However, wide variations of the reported quantum yields exist and the influence of ligand-surface interactions that are expected to control the excited state relaxation processes remains unknown. It is important to thoroughly understand the fundamental principles underlying these relaxation processes to tailor the QDs properties to their application. Here, we systematically investigate the roles of the surface atoms, ligand functional groups and solvent on the radiative and non-radiative relaxation rates. Combining a systematic synthetic approach with X-ray photoelectron, quantitative FT-IR and time-resolved visible spectroscopies, we find that CdTe QDs can be engineered with average radiative lifetimes ranging from nanoseconds up to microseconds. The non-radiative lifetimes are anticorrelated to the radiative lifetimes, although they show much less variation. The density, nature and orientation of the ligand functional groups and the dielectric constant of the solvent play major roles in determining charge carrier trapping and excitonic relaxation pathways. These results are used to propose a coupled dependence between hole-trapping on Te atoms and strong ligand coupling, primarily via Cd atoms, that can be used to engineer both the radiative and non-radiative lifetimes.
碲化镉量子点具有独特的特性,在光致发光、光伏或光电子学应用中具有良好前景。然而,所报道的量子产率存在很大差异,并且预期会控制激发态弛豫过程的配体 - 表面相互作用的影响仍然未知。彻底理解这些弛豫过程背后的基本原理对于根据应用调整量子点的性质非常重要。在此,我们系统地研究了表面原子、配体官能团和溶剂对辐射和非辐射弛豫速率的作用。通过将系统的合成方法与X射线光电子能谱、定量傅里叶变换红外光谱和时间分辨可见光谱相结合,我们发现碲化镉量子点可以被设计为具有从纳秒到微秒的平均辐射寿命。非辐射寿命与辐射寿命呈反相关,尽管其变化要小得多。配体官能团的密度、性质和取向以及溶剂的介电常数在决定电荷载流子俘获和激子弛豫途径方面起着主要作用。这些结果被用于提出碲原子上的空穴俘获与主要通过镉原子的强配体耦合之间的耦合相关性,可用于设计辐射和非辐射寿命。
参考文献(55)
被引文献(80)
Mechanisms for intraband energy relaxation in semiconductor quantum dots: The role of electron-hole interactions
DOI:
10.1103/physrevb.61.r13349
发表时间:
2000-05-15
期刊:
PHYSICAL REVIEW B
影响因子:
3.7
作者:
Klimov, VI;Mikhailovsky, AA;Bawendi, MG
通讯作者:
Bawendi, MG
Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters
DOI:
10.1021/jp806791s
发表时间:
2008-12-04
期刊:
JOURNAL OF PHYSICAL CHEMISTRY C
影响因子:
3.7
作者:
Kamat, Prashant V.
通讯作者:
Kamat, Prashant V.
A Common Mechanism Underlies the Dark Fraction Formation and Fluorescence Blinking of Quantum Dots
DOI:
10.1021/nn800684z
发表时间:
2009-05-01
期刊:
ACS NANO
影响因子:
17.1
作者:
Durisic, Nela;Wiseman, Paul W.;Heyes, Colin D.
通讯作者:
Heyes, Colin D.
Efficient phase transfer of luminescent thiol-capped nanocrystals: From water to nonpolar organic solvents
DOI:
10.1021/nl025662w
发表时间:
2002-08-01
期刊:
NANO LETTERS
影响因子:
10.8
作者:
Gaponik, N;Talapin, DV;Weller, H
通讯作者:
Weller, H
Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions
DOI:
10.1021/jp044770z
发表时间:
2005-09-22
期刊:
JOURNAL OF PHYSICAL CHEMISTRY B
影响因子:
3.3
作者:
Guo, J;Yang, WL;Wang, CC
通讯作者:
Wang, CC

数据更新时间:{{ references.updateTime }}

关联基金

Monovalent Nanocrystals for Biomedical Imaging
批准号:
7904025
批准年份:
2009
资助金额:
17.57
项目类别:
Heyes, Colin D.
通讯地址:
Univ Arkansas, Dept Chem & Biochem, Fayetteville, AR 72701 USA
所属机构:
Univ ArkansasnUniversity of Arkansas SystemnUniversity of Arkansas FayettevillenUniversity of Arkansas Fulbright College of Arts and SciencesnUniversity of Arkansas Department of Chemistry and Biochemistry
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓