喵ID:qWGSAd免责声明

机器学习模型安全与隐私研究综述

基本信息

DOI:
10.13328/j.cnki.jos.006131
发表时间:
2021
期刊:
软件学报
影响因子:
--
通讯作者:
李博
中科院分区:
其他
文献类型:
--
作者: 纪守领;杜天宇;李进锋;沈超;李博研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

In the era of big data, the breakthroughs in theories and technologies such as deep learning, reinforcement learning, and distributed learning have provided strong support for machine learning at the data and algorithm levels and simultaneously promoted the large-scale and industrialized development of machine learning. However, although machine learning models have excellent performance in real-world applications, they still face many security threats. The security and privacy threats faced by machine learning at the data layer, model layer, and application layer exhibit the characteristics of diversity, concealment, and dynamic evolution. The security and privacy issues of machine learning have attracted extensive attention from academia and industry. A large number of scholars have conducted in-depth research on the security and privacy issues of models from the perspectives of attack and defense respectively and have proposed a series of attack and defense methods. This paper reviews the security and privacy issues of machine learning and systematically summarizes and scientifically generalizes the existing research work. At the same time, it clarifies the advantages and disadvantages of the current research. Finally, it discusses the challenges currently faced by the research on the security and privacy protection of machine learning models and the potential research directions in the future, aiming to provide guidance for subsequent scholars to further promote the development and application of the research on the security and privacy protection of machine learning models.
在大数据时代下,深度学习、强化学习以及分布式学习等理论和技术取得的突破性进展,为机器学习提供了数据和算法层面强有力的支撑,同时促进了机器学习的规模化和产业化发展.然而,尽管机器学习模型在现实应用中有着出色的表现,但其本身仍然面临着诸多的安全威胁.机器学习在数据层、模型层以及应用层面临的安全和隐私威胁呈现出多样性、隐蔽性和动态演化的特点.机器学习的安全和隐私问题吸引了学术界和工业界的广泛关注,一大批学者分别从攻击和防御的角度对模型的安全和隐私问题进行了深入的研究,并且提出了一系列的攻防方法.回顾了机器学习的安全和隐私问题,并对现有的研究工作进行了系统的总结和科学的归纳,同时明确了当前研究的优势和不足.最后探讨了机器学习模型安全与隐私保护研究当前所面临的挑战以及未来潜在的研究方向,旨在为后续学者进一步推动机器学习模型安全与隐私保护研究的发展和应用提供指导.
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

关联基金

海量多源异构数据的使用授权与鉴权体系研究
批准号:
U1836202
批准年份:
2018
资助金额:
249.0
项目类别:
联合基金项目
李博
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓