喵ID:qVb3bW免责声明

16S rRNA gene sequencing and machine learning reveal correlation between drug abuse and human host gut microbiota

16S rRNA 基因测序和机器学习揭示药物滥用与人类宿主肠道微生物群之间的相关性

基本信息

DOI:
--
发表时间:
2023
影响因子:
3.4
通讯作者:
Lizhe An
中科院分区:
医学2区
文献类型:
--
作者: Yunting Liu;Pei Zhang;Hongmei Sheng;Ding Xu;Daixi Li;Lizhe An研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Over the past few years, there has been increasing evidence highlighting the strong connection between gut microbiota and overall well‐being of the host. This has led to a renewed emphasis on studying and addressing substance use disorder from the perspective of brain‐gut axis. Previous studies have suggested that alcohol, food, and cigarette addictions are strongly linked to gut microbiota and faecal microbiota transplantation or the use of probiotics achieved significant efficacy. Unfortunately, little is known about the relationship between drug abuse and gut microbiota. This paper aims to reveal the potential correlation between gut microbiota and drug abuse and to develop an accurate identification model for drug‐related faeces samples by machine learning. Faecal samples were collected from 476 participants from three regions in China (Shanghai, Yunnan, and Shandong). Their gut microbiota information was obtained using 16S rRNA gene sequencing, and a substance use disorder identification model was developed by machine learning. Analysis revealed a lower diversity and a more homogeneous gut microbiota community structure among participants with substance use disorder. Bacteroides, Prevotella_9, Faecalibacterium, and Blautia were identified as important biomarkers associated with substance use disorder. The function prediction analysis revealed that the citrate and reductive citrate cycles were significantly upregulated in the substance use disorder group, while the shikimate pathway was downregulated. In addition, the machine learning model could distinguish faecal samples between substance users and nonsubstance users with an AUC = 0.9, indicating its potential use in predicting and screening individuals with substance use disorder within the community in the future.
在过去几年中,越来越多的证据凸显了肠道微生物群与宿主整体健康之间的紧密联系。这使得从脑 - 肠轴的角度研究和解决物质使用障碍受到了新的重视。先前的研究表明,酒精、食物和香烟成瘾与肠道微生物群密切相关,粪便微生物群移植或使用益生菌取得了显著效果。不幸的是,人们对药物滥用与肠道微生物群之间的关系知之甚少。本文旨在揭示肠道微生物群与药物滥用之间的潜在相关性,并通过机器学习为与药物相关的粪便样本建立准确的识别模型。从中国三个地区(上海、云南和山东)的476名参与者收集了粪便样本。利用16S rRNA基因测序获取了他们的肠道微生物群信息,并通过机器学习建立了一个物质使用障碍识别模型。分析显示,物质使用障碍参与者的肠道微生物群多样性较低,群落结构更均匀。拟杆菌属、普氏菌属_9、粪杆菌属和布劳特氏菌属被确定为与物质使用障碍相关的重要生物标志物。功能预测分析表明,柠檬酸循环和还原柠檬酸循环在物质使用障碍组中显著上调,而莽草酸途径则下调。此外,该机器学习模型能够区分物质使用者和非物质使用者的粪便样本,曲线下面积(AUC)= 0.9,这表明它在未来预测和筛选社区内物质使用障碍个体方面具有潜在用途。
参考文献(3)
被引文献(1)
Neural Substrates and Circuits of Drug Addiction.
DOI:
10.1101/cshperspect.a039628
发表时间:
2021-04-01
期刊:
Cold Spring Harbor perspectives in medicine
影响因子:
5.4
作者:
Feltenstein MW;See RE;Fuchs RA
通讯作者:
Fuchs RA
Chronic ethanol consumption alters mammalian gastrointestinal content metabolites.
DOI:
10.1021/pr400362z
发表时间:
2013-07-05
期刊:
Journal of proteome research
影响因子:
4.4
作者:
Xie G;Zhong W;Zheng X;Li Q;Qiu Y;Li H;Chen H;Zhou Z;Jia W
通讯作者:
Jia W

数据更新时间:{{ references.updateTime }}

Lizhe An
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓