喵ID:qRHRbu免责声明

PeerClean: Unveiling peer-to-peer botnets through dynamic group behavior analysis

基本信息

DOI:
10.1109/infocom.2015.7218396
发表时间:
2015-01-01
期刊:
2015 IEEE Conference on Computer Communications (INFOCOM). Proceedings
影响因子:
--
通讯作者:
Hou, Y. Thomas
中科院分区:
其他
文献类型:
Conference Paper
作者: Qiben Yan;Yao Zheng;Hou, Y. Thomas研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Advanced botnets adopt a peer-to-peer (P2P) infrastructure for more resilient command and control (C&C). Traditional detection techniques become less effective in identifying bots that communicate via a P2P structure. In this paper, we present PeerClean, a novel system that detects P2P botnets in real time using only high-level features extracted from C&C network flow traffic. PeerClean reliably distinguishes P2P bot-infected hosts from legitimate P2P hosts by jointly considering flow-level traffic statistics and network connection patterns. Instead of working on individual connections or hosts, PeerClean clusters hosts with similar flow traffic statistics into groups. It then extracts the collective and dynamic connection patterns of each group by leveraging a novel dynamic group behavior analysis. Comparing with the individual host-level connection patterns, the collective group patterns are more robust and differentiable. Multi-class classification models are then used to identify different types of bots based on the established patterns. To increase the detection probability, we further propose to train the model with average group behavior, but to explore the extreme group behavior for the detection. We evaluate PeerClean on real-world flow records from a campus network. Our evaluation shows that PeerClean is able to achieve high detection rates with few false positives.
高级僵尸网络采用点对点(P2P)基础架构,以进行更多的弹性命令和控制(C&C)。传统的检测技术在识别通过P2P结构通信的机器人方面的有效性降低。在本文中,我们提出了Peerclean,这是一种新型系统,该系统可实时检测P2P僵尸网络,仅使用C&C网络流量流量提取的高级功能。 Peerclean可靠地通过共同考虑流量级的流量统计和网络连接模式来可靠地将P2P BOT感染的主机与合法的P2P主机区分开。 Peerclean集群主机无需在单个连接或主机上工作,而流量流量统计相似。然后,它通过利用新型的动态组行为分析来提取每个组的集体和动态连接模式。与单个主机级连接模式相比,集体组模式更加稳健和可区分。然后,多级分类模型用于根据已建立的模式识别不同类型的机器人。为了增加检测概率,我们进一步建议以平均群体行为训练模型,但要探索检测的极端群体行为。我们从校园网络中评估了Peerclean在现实世界流记录上。我们的评估表明,Peerclean能够以很少的假阳性实现高检测率。
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Hou, Y. Thomas
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓