喵ID:qMc7Ra免责声明

Advancing Eosinophilic Esophagitis Diagnosis and Phenotype Assessment with Deep Learning Computer Vision.

基本信息

DOI:
10.5220/0010241900440055
发表时间:
2021-03
期刊:
Biomedical engineering systems and technologies, international joint conference, BIOSTEC ... revised selected papers. BIOSTEC (Conference)
影响因子:
--
通讯作者:
Brown DE
中科院分区:
其他
文献类型:
Journal Article
作者: Adorno W 3rd;Catalano A;Ehsan L;Vitzhum von Eckstaedt H;Barnes B;McGowan E;Syed S;Brown DE研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Eosinophilic Esophagitis (EoE) is an inflammatory esophageal disease which is increasing in prevalence. The diagnostic gold-standard involves manual review of a patient’s biopsy tissue sample by a clinical pathologist for the presence of 15 or greater eosinophils within a single high-power field (400× magnification). Diagnosing EoE can be a cumbersome process with added difficulty for assessing the severity and progression of disease. We propose an automated approach for quantifying eosinophils using deep image segmentation. A U-Net model and post-processing system are applied to generate eosinophil-based statistics that can diagnose EoE as well as describe disease severity and progression. These statistics are captured in biopsies at the initial EoE diagnosis and are then compared with patient metadata: clinical and treatment phenotypes. The goal is to find linkages that could potentially guide treatment plans for new patients at their initial disease diagnosis. A deep image classification model is further applied to discover features other than eosinophils that can be used to diagnose EoE. This is the first study to utilize a deep learning computer vision approach for EoE diagnosis and to provide an automated process for tracking disease severity and progression.
嗜酸性食管炎(EoE)是一种患病率不断上升的炎症性食管疾病。诊断的金标准包括由临床病理学家对患者的活检组织样本进行人工检查,查看在单个高倍视野(400×放大倍数)内是否存在15个或更多的嗜酸性粒细胞。诊断EoE可能是一个繁琐的过程,在评估疾病的严重程度和进展方面还存在额外的困难。我们提出一种使用深度图像分割来量化嗜酸性粒细胞的自动化方法。应用一个U - Net模型和后处理系统来生成基于嗜酸性粒细胞的统计数据,这些数据可用于诊断EoE以及描述疾病的严重程度和进展。这些统计数据是在EoE初次诊断时的活检中获取的,然后与患者的元数据(临床和治疗表型)进行比较。目的是找到可能在新患者初次疾病诊断时指导治疗方案的关联。进一步应用一个深度图像分类模型来发现除嗜酸性粒细胞之外可用于诊断EoE的特征。这是第一项利用深度学习计算机视觉方法进行EoE诊断并提供跟踪疾病严重程度和进展的自动化流程的研究。
参考文献(0)
被引文献(0)
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
DOI:
10.1109/iccv.2017.74
发表时间:
2017-01-01
期刊:
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV)
影响因子:
0
作者:
Selvaraju, Ramprasaath R.;Cogswell, Michael;Batra, Dhruv
通讯作者:
Batra, Dhruv
Eosinophils: changing perspectives in health and disease.
DOI:
10.1038/nri3341
发表时间:
2013-01
期刊:
Nature reviews. Immunology
影响因子:
0
作者:
通讯作者:
A phenotypic analysis shows that eosinophilic esophagitis is a progressive fibrostenotic disease.
DOI:
10.1016/j.gie.2013.10.027
发表时间:
2014-04
期刊:
Gastrointestinal endoscopy
影响因子:
7.7
作者:
Dellon ES;Kim HP;Sperry SL;Rybnicek DA;Woosley JT;Shaheen NJ
通讯作者:
Shaheen NJ
ImageNet Large Scale Visual Recognition Challenge
DOI:
10.1007/s11263-015-0816-y
发表时间:
2015-12-01
期刊:
INTERNATIONAL JOURNAL OF COMPUTER VISION
影响因子:
19.5
作者:
Russakovsky, Olga;Deng, Jia;Fei-Fei, Li
通讯作者:
Fei-Fei, Li
Eosinophilic esophagitis: Updated consensus recommendations for children and adults
DOI:
10.1016/j.jaci.2011.02.040
发表时间:
2011-07-01
期刊:
JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY
影响因子:
14.2
作者:
Liacouras, ChrisA.;Furuta, Glenn T.;Aceves, Seema S.
通讯作者:
Aceves, Seema S.

数据更新时间:{{ references.updateTime }}

关联基金

Computational Characterization of Environmental Enteropathy
批准号:
10627838
批准年份:
2019
资助金额:
19.26
项目类别:
Brown DE
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓