喵ID:qCUmxs免责声明

Identifying and testing marker-trait associations for growth and phenology in three pine species: Implications for genomic prediction.

基本信息

DOI:
10.1111/eva.13345
发表时间:
2022-03
影响因子:
4.1
通讯作者:
Cavers S
中科院分区:
生物学2区
文献类型:
Journal Article
作者: Perry A;Wachowiak W;Beaton J;Iason G;Cottrell J;Cavers S研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

In tree species, genomic prediction offers the potential to forecast mature trait values in early growth stages, if robust marker–trait associations can be identified. Here we apply a novel multispecies approach using genotypes from a new genotyping array, based on 20,795 single nucleotide polymorphisms (SNPs) from three closely related pine species (Pinus sylvestris, Pinus uncinata and Pinus mugo), to test for associations with growth and phenology data from a common garden study. Predictive models constructed using significantly associated SNPs were then tested and applied to an independent multisite field trial of P. sylvestris and the capability to predict trait values was evaluated. One hundred and eighteen SNPs showed significant associations with the traits in the pine species. Common SNPs (MAF > 0.05) associated with bud set were only found in genes putatively involved in growth and development, whereas those associated with growth and budburst were also located in genes putatively involved in response to environment and, to a lesser extent, reproduction. At one of the two independent sites, the model we developed produced highly significant correlations between predicted values and observed height data (YA, height 2020: r = 0.376, p < 0.001). Predicted values estimated with our budburst model were weakly but positively correlated with duration of budburst at one of the sites (GS, 2015: r = 0.204, p = 0.034; 2018: r = 0.205, p = 0.034–0.037) and negatively associated with budburst timing at the other (YA: r = −0.202, p = 0.046). Genomic prediction resulted in the selection of sets of trees whose mean height was taller than the average for each site. Our results provide tentative support for the capability of prediction models to forecast trait values in trees, while highlighting the need for caution in applying them to trees grown in different environments.
在树种中,如果能够确定可靠的标记 - 性状关联,基因组预测就有可能预测早期生长阶段的成熟性状值。在此,我们应用一种新的多物种方法,使用来自一种新的基因分型阵列的基因型,该阵列基于来自三个密切相关的松树物种(欧洲赤松、偃松和中欧山松)的20,795个单核苷酸多态性(SNP),来测试与一个公共园林研究中的生长和物候数据的关联。然后对使用显著相关的SNP构建的预测模型进行测试,并将其应用于欧洲赤松的一个独立多地点田间试验,同时评估预测性状值的能力。118个SNP与松树物种的性状显示出显著关联。与芽形成相关的常见SNP(最小等位基因频率>0.05)仅在假定参与生长和发育的基因中被发现,而与生长和芽萌发相关的SNP也位于假定参与对环境响应的基因中,在较小程度上还位于与繁殖相关的基因中。在两个独立地点中的一个,我们开发的模型在预测值和观测到的树高数据之间产生了极显著的相关性(YA,2020年树高:r = 0.376,p < 0.001)。用我们的芽萌发模型估计的预测值在其中一个地点与芽萌发持续时间呈弱正相关(GS,2015年:r = 0.204,p = 0.034;2018年:r = 0.205,p = 0.034 - 0.037),在另一个地点与芽萌发时间呈负相关(YA:r = -0.202,p = 0.046)。基因组预测导致所选树木组的平均树高高于每个地点的平均值。我们的结果为预测模型预测树木性状值的能力提供了初步支持,同时强调在将其应用于不同环境中生长的树木时需要谨慎。
参考文献(0)
被引文献(0)
Genetic variation in growth traits in a Quercus robur L. open-pollinated progeny test of the Slavonian provenance
DOI:
10.1515/sg-2004-0036
发表时间:
2004-01-01
期刊:
SILVAE GENETICA
影响因子:
1
作者:
Bogdan, S;Katicic-Trupcevic, I;Kajba, D
通讯作者:
Kajba, D
TASSEL: software for association mapping of complex traits in diverse samples
DOI:
10.1093/bioinformatics/btm308
发表时间:
2007-10-01
期刊:
BIOINFORMATICS
影响因子:
5.8
作者:
Bradbury, Peter J.;Zhang, Zhiwu;Buckler, Edward S.
通讯作者:
Buckler, Edward S.
Performance of genomic prediction within and across generations in maritime pine.
海松世代内和世代间基因组预测的表现。
DOI:
10.1186/s12864-016-2879-8
发表时间:
2016-08-11
期刊:
BMC genomics
影响因子:
4.4
作者:
Bartholomé J;Van Heerwaarden J;Isik F;Boury C;Vidal M;Plomion C;Bouffier L
通讯作者:
Bouffier L
Evaluation of the efficiency of genomic versus pedigree predictions for growth and wood quality traits in Scots pine.
DOI:
10.1186/s12864-020-07188-4
发表时间:
2020-11-16
期刊:
BMC genomics
影响因子:
4.4
作者:
Calleja-Rodriguez A;Pan J;Funda T;Chen Z;Baison J;Isik F;Abrahamsson S;Wu HX
通讯作者:
Wu HX
Global change and terrestrial plant community dynamics
DOI:
10.1073/pnas.1519911113
发表时间:
2016-04-05
期刊:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
影响因子:
11.1
作者:
Franklin, Janet;Serra-Diaz, Josep M.;Regan, Helen M.
通讯作者:
Regan, Helen M.

数据更新时间:{{ references.updateTime }}

Cavers S
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓