喵ID:pxwiJe

A Neural Network Approach for High-Dimensional Optimal Control Applied to Multiagent Path Finding
A Neural Network Approach for High-Dimensional Optimal Control Applied to Multiagent Path Finding

应用于多智能体路径查找的高维最优控制神经网络方法

基本信息

DOI:
10.1109/tcst.2022.3172872
10.1109/tcst.2022.3172872
发表时间:
2021
2021
影响因子:
4.8
4.8
通讯作者:
Lars Ruthotto
Lars Ruthotto
中科院分区:
计算机科学2区
计算机科学2区
文献类型:
--
--
作者: Derek Onken;L. Nurbekyan;Xingjian Li;Samy Wu Fung;S. Osher;Lars Ruthotto
研究方向: --
MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

We propose a neural network (NN) approach that yields approximate solutions for high-dimensional optimal control (OC) problems and demonstrate its effectiveness using examples from multiagent path finding. Our approach yields control in a feedback form, where the policy function is given by an NN. In particular, we fuse the Hamilton–Jacobi–Bellman (HJB) and Pontryagin maximum principle (PMP) approaches by parameterizing the value function with an NN. Our approach enables us to obtain approximately OCs in real time without having to solve an optimization problem. Once the policy function is trained, generating a control at a given space–time location takes milliseconds; in contrast, efficient nonlinear programming methods typically perform the same task in seconds. We train the NN offline using the objective function of the control problem and penalty terms that enforce the HJB equations. Therefore, our training algorithm does not involve data generated by another algorithm. By training on a distribution of initial states, we ensure the controls’ optimality on a large portion of the state space. Our grid-free approach scales efficiently to dimensions where grids become impractical or infeasible. We apply our approach to several multiagent collision-avoidance problems in up to 150 dimensions. Furthermore, we empirically observe that the number of parameters in our approach scales linearly with the dimension of the control problem, thereby mitigating the curse of dimensionality.
我们提出了一种神经网络(NN)方法,该方法可为高维最佳控制(OC)提供近似的解决方案,并使用多种路径的示例来证明其有效性,我们的方法以反馈形式产生控制。因此,我们的方法能够实时获得大约的OC,而不必解决策略功能。通过对初始状态的分布进行训练,涉及另一个算法,我们在状态空间的大部分方面的最佳性能有效地缩放到不可能的方法中,我们的方法是不切实际的。与控制问题的维度,从而减轻维数的曲线。
参考文献(9)
被引文献(29)
Solutions for Multiagent Pursuit-Evasion Games on Communication Graphs: Finite-Time Capture and Asymptotic Behaviors
Solutions for Multiagent Pursuit-Evasion Games on Communication Graphs: Finite-Time Capture and Asymptotic Behaviors
DOI:
10.1109/tac.2019.2926554
10.1109/tac.2019.2926554
发表时间:
2020-05
2020-05
影响因子:
6.8
6.8
作者:
V. Lopez;F. Lewis;Yan Wan;E. Sánchez;Lingling Fan-
V. Lopez;F. Lewis;Yan Wan;E. Sánchez;Lingling Fan-
通讯作者:
V. Lopez;F. Lewis;Yan Wan;E. Sánchez;Lingling Fan-
V. Lopez;F. Lewis;Yan Wan;E. Sánchez;Lingling Fan-
A Neural Network Approach Applied to Multi-Agent Optimal Control
A Neural Network Approach Applied to Multi-Agent Optimal Control
应用于多智能体最优控制的神经网络方法
应用于多智能体最优控制的神经网络方法
DOI:
发表时间:
2021
2021
影响因子:
0
0
作者:
Onken, D;Nurbekyan, L;Li, Xingjian;Wu Fung, S;Osher, S;Ruthotto, L
Onken, D;Nurbekyan, L;Li, Xingjian;Wu Fung, S;Osher, S;Ruthotto, L
通讯作者:
Ruthotto, L
Ruthotto, L
A machine learning framework for solving high-dimensional mean field game and mean field control problems
A machine learning framework for solving high-dimensional mean field game and mean field control problems
DOI:
10.1073/pnas.1922204117
10.1073/pnas.1922204117
发表时间:
2020-04-28
2020-04-28
影响因子:
11.1
11.1
作者:
Ruthotto, Lars;Osher, Stanley J.;Fung, Samy Wu
Ruthotto, Lars;Osher, Stanley J.;Fung, Samy Wu
通讯作者:
Fung, Samy Wu
Fung, Samy Wu
Learning Trajectories for Real- Time Optimal Control of Quadrotors
Learning Trajectories for Real- Time Optimal Control of Quadrotors
DOI:
10.1109/iros.2018.8593536
10.1109/iros.2018.8593536
发表时间:
2018-10
2018-10
影响因子:
0
0
作者:
Gao Tang;Weidong Sun;Kris K. Hauser
Gao Tang;Weidong Sun;Kris K. Hauser
通讯作者:
Gao Tang;Weidong Sun;Kris K. Hauser
Gao Tang;Weidong Sun;Kris K. Hauser
Algorithm for overcoming the curse of dimensionality for state-dependent Hamilton-Jacobi equations
Algorithm for overcoming the curse of dimensionality for state-dependent Hamilton-Jacobi equations
克服状态相关的 Hamilton-Jacobi 方程维数灾难的算法
克服状态相关的 Hamilton-Jacobi 方程维数灾难的算法
DOI:
10.1016/j.jcp.2019.01.051
10.1016/j.jcp.2019.01.051
发表时间:
2019
2019
影响因子:
4.1
4.1
作者:
Chow, Yat Tin;Darbon, Jérôme;Osher, Stanley;Yin, Wotao
Chow, Yat Tin;Darbon, Jérôme;Osher, Stanley;Yin, Wotao
通讯作者:
Yin, Wotao
Yin, Wotao
共 5 条
  • 1
前往