喵ID:pvtleQ免责声明

Unraveling the complex relationship between mRNA and protein abundances: a machine learning-based approach for imputing protein levels from RNA-seq data

揭示 mRNA 和蛋白质丰度之间的复杂关系:一种基于机器学习的方法,用于根据 RNA-seq 数据估算蛋白质水平

基本信息

DOI:
--
发表时间:
2024
影响因子:
4.6
通讯作者:
Peng Jiang
中科院分区:
文献类型:
--
作者: Archana Prabahar;R. Zamora;Derek A. Barclay;Jinling Yin;Mahesh Ramamoorthy;Atefe Bagheri;Scott Johnson;Stephen F. Badylak;Y. Vodovotz;Peng Jiang研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Abstract The correlation between messenger RNA (mRNA) and protein abundances has long been debated. RNA sequencing (RNA-seq), a high-throughput, commonly used method for analyzing transcriptional dynamics, leaves questions about whether we can translate RNA-seq-identified gene signatures directly to protein changes. In this study, we utilized a set of 17 widely assessed immune and wound healing mediators in the context of canine volumetric muscle loss to investigate the correlation of mRNA and protein abundances. Our data reveal an overall agreement between mRNA and protein levels on these 17 mediators when examining samples from the same experimental condition (e.g. the same biopsy). However, we observed a lack of correlation between mRNA and protein levels for individual genes under different conditions, underscoring the challenges in converting transcriptional changes into protein changes. To address this discrepancy, we developed a machine learning model to predict protein abundances from RNA-seq data, achieving high accuracy. Our approach also effectively corrected multiple extreme outliers measured by antibody-based protein assays. Additionally, this model has the potential to detect post-translational modification events, as shown by accurately estimating activated transforming growth factor β1 levels. This study presents a promising approach for converting RNA-seq data into protein abundance and its biological significance.
摘要 信使RNA(mRNA)与蛋白质丰度之间的相关性长期以来一直备受争议。RNA测序(RNA - seq)是一种高通量、常用的分析转录动态的方法,这引发了我们是否能将RNA - seq所确定的基因特征直接转化为蛋白质变化的疑问。在本研究中,我们在犬肌肉容积性缺失的背景下,利用一组17种被广泛评估的免疫和伤口愈合介质来研究mRNA与蛋白质丰度的相关性。我们的数据显示,当检测来自相同实验条件(例如相同的活检样本)的样本时,这17种介质的mRNA和蛋白质水平总体上是一致的。然而,我们观察到在不同条件下单个基因的mRNA和蛋白质水平之间缺乏相关性,这突显了将转录变化转化为蛋白质变化所面临的挑战。为了解决这种差异,我们开发了一种机器学习模型,从RNA - seq数据预测蛋白质丰度,该模型达到了较高的准确性。我们的方法还有效地纠正了基于抗体的蛋白质检测所测得的多个极端异常值。此外,该模型有可能检测翻译后修饰事件,正如准确估计活化的转化生长因子β1水平所表明的那样。本研究为将RNA - seq数据转化为蛋白质丰度及其生物学意义提供了一种有前景的方法。
参考文献(1)
被引文献(0)
On the Dependency of Cellular Protein Levels on mRNA Abundance
DOI:
10.1016/j.cell.2016.03.014
发表时间:
2016-04-21
期刊:
CELL
影响因子:
64.5
作者:
Liu, Yansheng;Beyer, Andreas;Aebersold, Ruedi
通讯作者:
Aebersold, Ruedi

数据更新时间:{{ references.updateTime }}

Peng Jiang
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓