喵ID:obv0fA免责声明

Foundational Data Science Training for Health Equity Researchers at Minority Serving Institutions: A SoRDS Event

为少数族裔服务机构的健康公平研究人员提供基础数据科学培训:SORDS 活动

基本信息

DOI:
10.1109/ichi57859.2023.00115
发表时间:
2023
期刊:
2023 IEEE 11th International Conference on Healthcare Informatics (ICHI)
影响因子:
--
通讯作者:
Bianca Peterson
中科院分区:
文献类型:
--
作者: Robert Quick;Marcela Alfaro Córdoba;Stephen Diggs;Raphael Cobe;Louise Bezuidenhout;Hugh Shannahan;Bianca Peterson研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Contemporary research, particularly when addressing the most significant transdisciplinary research challenges, cannot effectively be done without a range of skills relating to data management, data analysis, and cyberinfrastructure (CI). These data and CI skills are common to all disciplines that conduct data-centric research. Research Data Science acts as a vital component of the scientific process. In a grassroots attempt to address this gap, the CODATA-RDA Schools of Research Data Science (SoRDS) was founded in 2016 to provide instruction on foundational data science and open research concepts to early career researchers in low and middle-income countries. This partnership between international collaborators has since 2016 provided this training to over 1000 early career researchers in 24 events in 10 countries worldwide. The most recent event was held at Georgia Institute of Technology and focused on health equity and included researchers from minority-serving institutions in the southeast United States. This paper covers the background of the SoRDS project along with organization and curriculum details. It also covers the transition of the events from a non-domain-centric curriculum to spotlighting biological and social health equity data and what we learned to make future health-related events more engaging and valuable to the attendees. It also looks toward future events that will serve international students studying health informatics and other data-centric disciplines.
当代研究,尤其是在应对最重要的跨学科研究挑战时,如果没有一系列与数据管理、数据分析和网络基础设施(CI)相关的技能,是无法有效开展的。这些数据和CI技能对于所有进行以数据为中心的研究的学科都是通用的。研究数据科学是科学过程的一个重要组成部分。为了从基层层面弥补这一差距,研究数据科学国际科技数据委员会 - 科研数据联盟学院(CODATA - RDA Schools of Research Data Science,SoRDS)于2016年成立,旨在为中低收入国家的早期职业研究人员提供基础数据科学和开放研究概念方面的指导。自2016年以来,国际合作者之间的这种伙伴关系已在全球10个国家举办了24次活动,为1000多名早期职业研究人员提供了此类培训。最近一次活动在佐治亚理工学院举行,重点关注健康公平问题,参与者包括来自美国东南部为少数族裔服务的机构的研究人员。本文涵盖了SoRDS项目的背景以及组织和课程细节。它还涉及活动从非以领域为中心的课程向聚焦生物和社会健康公平数据的转变,以及我们为使未来与健康相关的活动对参与者更具吸引力和更有价值所学到的经验。它还展望了未来将为学习健康信息学和其他以数据为中心的学科的国际学生服务的活动。
参考文献(1)
被引文献(0)
Data science skills and domain knowledge requirements in the manufacturing industry: A gap analysis
DOI:
10.1016/j.jmsy.2021.07.007
发表时间:
2021-08-02
期刊:
JOURNAL OF MANUFACTURING SYSTEMS
影响因子:
12.1
作者:
Li, Guoyan;Yuan, Chenxi;Jin, Xiaoning
通讯作者:
Jin, Xiaoning

数据更新时间:{{ references.updateTime }}

Bianca Peterson
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓