喵ID:o5ECXs免责声明

Multi-core Structural SVM Training

基本信息

DOI:
10.1007/978-3-642-40991-2_26
发表时间:
2013-01-01
期刊:
Machine Learning and Knowledge Discovery in Databases. European Conference (ECML PKDD 2013). Proceedings: LNCS 8189
影响因子:
--
通讯作者:
Roth, Dan
中科院分区:
其他
文献类型:
Conference Paper
作者: Kai-Wei Chang;Srikumar, Vivek;Roth, Dan研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Many problems in natural language processing and computer vision can be framed as structured prediction problems. Structural support vector machines (SVM) is a popular approach for training structured predictors, where learning is framed as an optimization problem. Most structural SVM solvers alternate between a model update phase and an inference phase (which predicts structures for all training examples). As structures become more complex, inference becomes a bottleneck and thus slows down learning considerably. In this paper, we propose a new learning algorithm for structural SVMs called DEMIDCD that extends the dual coordinate descent approach by decoupling the model update and inference phases into different threads. We take advantage of multicore hardware to parallelize learning with minimal synchronization between the model update and the inference phases.We prove that our algorithm not only converges but also fully utilizes all available processors to speed up learning, and validate our approach on two real-world NLP problems: part-of-speech tagging and relation extraction. In both cases, we show that our algorithm utilizes all available processors to speed up learning and achieves competitive performance. For example, it achieves a relative duality gap of 1% on a POS tagging problem in 192 seconds using 16 threads, while a standard implementation of a multi-threaded dual coordinate descent algorithm with the same number of threads requires more than 600 seconds to reach a solution of the same quality.
自然语言处理和计算机视觉中的许多问题都可以作为结构化的预测问题构成。结构支持向量机(SVM)是训练结构化预测因子的流行方法,其中学习被构成优化问题。大多数结构SVM求解器在模型更新阶段和推理阶段之间进行交替(这可以预测所有培训示例的结构)。随着结构变得越来越复杂,推理成为瓶颈,从而大大减慢了学习的速度。在本文中,我们为称为demIDCD的结构SVM提出了一种新的学习算法,该算法通过将模型更新和推理阶段分解为不同的线程来扩展双坐标下降方法。我们利用多核算硬件的优势来平行学习,并在模型更新和推理阶段之间最少同步,并证明我们的算法不仅收敛,而且还完全利用所有可用的处理器来加快学习速度,并在两个现实世界中验证我们的方法NLP问题:词性标记和关系提取。在这两种情况下,我们都表明我们的算法都利用所有可用的处理器来加快学习和实现竞争性能。例如,它在192秒内使用16个线程在192秒内实现了相对双重性差距为1%,而多线程双坐标下降算法的标准实现具有相同数量的线程,需要超过600秒才能达到相同质量的解决方案。
参考文献
被引文献

数据更新时间:{{ references.updateTime }}

Roth, Dan
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓