喵ID:n7e7kS免责声明

Hypergraph based multi-task feature selection for multimodal classification of Alzheimer's disease

基于超图的多任务特征选择用于阿尔茨海默病的多模态分类

基本信息

DOI:
10.1016/j.compmedimag.2019.101663
发表时间:
2020-03-01
影响因子:
5.7
通讯作者:
Zhang, Daoqiang
中科院分区:
工程技术2区
文献类型:
Article
作者: Shao, Wei;Peng, Yao;Zhang, Daoqiang研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Multi-modality based classification methods are superior to the single modality based approaches for the automatic diagnosis of the Alzheimer's disease (AD) and mild cognitive impairment (MCI). However, most of the multi-modality based methods usually ignore the structure information of data and simply squeeze them to pairwise relationships. In real-world applications, the relationships among subjects are much more complex than pairwise, and the high-order structure containing more discriminative information will be intuitively beneficial to our learning tasks. In light of this, a hypergraph based multi-task feature selection method for AD/MCI classification is proposed in this paper. Specifically, we first perform feature selection on each modality as a single task and incorporate group-sparsity regularizer to jointly select common features across multiple modalities. Then, we introduce a hypergraph based regularization term for the standard multi-task feature selection to model the high-order structure relationship among subjects. Finally, a multi-kernel support vector machine is adopted to fuse the features selected from different modalities for the final classification. The experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) demonstrate that our proposed method achieves better classification performance than the start-of-art multi-modality based methods. (C) 2019 Elsevier Ltd. All rights reserved.
基于多模态的分类方法在阿尔茨海默病(AD)和轻度认知障碍(MCI)的自动诊断方面优于基于单模态的方法。然而,大多数基于多模态的方法通常忽略数据的结构信息,只是将其压缩为成对关系。在实际应用中,研究对象之间的关系比成对关系要复杂得多,包含更多判别信息的高阶结构直观上对我们的学习任务有益。有鉴于此,本文提出了一种基于超图的用于AD/MCI分类的多任务特征选择方法。具体而言,我们首先将每个模态作为单个任务进行特征选择,并结合组稀疏正则化器来联合选择跨多个模态的共同特征。然后,我们为标准的多任务特征选择引入一个基于超图的正则化项,以对研究对象之间的高阶结构关系进行建模。最后,采用多核支持向量机融合从不同模态中选择的特征进行最终分类。在阿尔茨海默病神经影像学倡议(ADNI)上的实验结果表明,我们提出的方法比现有的基于多模态的先进方法取得了更好的分类性能。(C)2019爱思唯尔有限公司。保留所有权利。
参考文献(61)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Zhang, Daoqiang
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓