喵ID:mx4enC免责声明

Potential of machine learning for prediction of traffic related air pollution

基本信息

DOI:
10.1016/j.trd.2020.102599
发表时间:
2020-11-01
影响因子:
7.6
通讯作者:
Hatzopoulou, Marianne
中科院分区:
工程技术2区
文献类型:
Article
作者: Wang, An;Xu, Junshi;Hatzopoulou, Marianne研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Land use regression (LUR) has been extensively used to capture the spatial distribution of air pollution. However, regional background and non-linear relationships can be challenging to capture using linear approaches. Machine learning approaches have recently been used in air quality prediction. Using data from a mobile campaign of fine particulate matter and black carbon in Toronto, Canada, this study investigates the boundaries of LUR approaches and the potential of two different machine learning models: Artificial Neural Networks (ANN) and gradient boost. In addition, a moving camera was used to collect real-time traffic. Models developed for fine particulate matter performed better than those for black carbon. For the same pollutants, machine learning exhibited superior performance over LUR, demonstrating that LUR performance could benefit from understanding how explanatory variables were expressed in machine learning models. This study unveils the black-box nature of machine learning algorithms by investigating the performance of different models in the context of how they capture the relationship between air quality and various predictors.
土地利用回归(LUR)已被广泛用于获取空气污染的空间分布。然而,区域背景和非线性关系可能难以用线性方法获取。机器学习方法最近已用于空气质量预测。本研究利用加拿大多伦多一次细颗粒物和黑碳移动监测活动的数据,探究了LUR方法的局限性以及两种不同机器学习模型(人工神经网络和梯度提升)的潜力。此外,还使用了移动摄像机来收集实时交通数据。针对细颗粒物建立的模型比针对黑碳的模型表现更好。对于相同的污染物,机器学习表现优于LUR,这表明LUR的性能可受益于了解解释变量在机器学习模型中是如何表达的。本研究通过探究不同模型在捕捉空气质量与各种预测因子之间关系方面的表现,揭示了机器学习算法的黑箱性质。
参考文献(40)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Hatzopoulou, Marianne
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓